International audienceThe seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000 mm yr(-1) (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr(-1)
Plant and bird diversity in the Indonesian jungle rubber agroforestry system was compared to that in primary forest and rubber plantations by integrating new and existing data from a lowland rain forest area in Sumatra. Jungle rubber gardens are low-input rubber (Hevea brasiliensis) agroforests that structurally resemble secondary forest and in which wild species are tolerated by the farmer. As primary forests have almost completely disappeared from the lowlands of the Sumatra peneplain, our aim was to assess the contribution of jungle rubber as a land use type to the conservation of plant and bird species, especially those that are associated with the forest interior of primary and old secondary forest. Speciesaccumulation curves were compiled for terrestrial and epiphytic pteridophytes, trees and birds, and for subsets of 'forest species' of terrestrial pteridophytes and birds. Comparing jungle rubber and primary forest, groups differed in relative species richness patterns. Species richness in jungle rubber was slightly higher (terrestrial pteridophytes), similar (birds) or lower (epiphytic pteridophytes, trees, vascular plants as a whole) than in primary forest. For subsets of 'forest species' of terrestrial pteridophytes and birds, species richness in jungle rubber was lower than in primary forest. For all groups, species richness in jungle rubber was generally higher than in rubber plantations. Although species conservation in jungle rubber is limited by management practices and by a slash-and-burn cycle for replanting of about 40 years, this forest-like land use does support species diversity in an impoverished landscape increasingly dominated by monoculture plantations.
Tropical forest canopies are comprised of tree crowns of multiple species varying in shape and height, and ground inventories do not usually reliably describe their structure. Airborne laser scanning data can be used to characterize these individual crowns, but analytical tools developed for boreal or temperate forests may require to be adjusted before they can be applied to tropical environments. Therefore, we compared results from six different segmentation methods applied to six plots (39 ha) from a study site in French Guiana. We measured the overlap of automatically segmented crowns projection with selected crowns manually delineated on high-resolution photography. We also evaluated the goodness of fit following automatic matching with field inventory data using a model linking tree diameter to tree crown width. The different methods tested in this benchmark segmented highly different numbers of crowns having different characteristics. Segmentation methods based on the point cloud (AMS3D and Graph-Cut) globally outperformed methods based on the Canopy Height Models, especially for small crowns; the AMS3D method outperformed the other methods tested for the overlap analysis, and AMS3D and Graph-Cut performed the best for the automatic matching validation. Nevertheless, other methods based on the Canopy Height Model performed better for very large emergent crowns. The dense foliage of tropical moist forests prevents sufficient point densities in the understory to segment subcanopy trees accurately, regardless of the segmentation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.