For establishing Selective Laser Melting (SLM) in production technology, an extensive knowledge about the transient physical effects during the manufacturing process is mandatory. In this regard, a high process stability for various alloys, e.g. tool steel 1.2709 (X3NiC-oMoTi 18-9-5), is realisable, if approaches for the virtual qualification of adequate process parameters by means of a numerical simulation based on the finite element analysis (FEA) are developed. Furthermore, specific methods to evaluate and quantify the resulting residual stresses and deformations due to the temperature gradient mechanism (TGM) are required. Hence, the presented work contains particular approaches using the FEA for the simulation of transient physical effects within the additive layer manufacturing (ALM) process. The investigations focus on coupled thermo-mechanical models incorporating specific boundary conditions and temperature dependant material properties to identify the heat impact on residual stresses and deformations. In order to evaluate the structural effects and simultaneously validate the simulation, analysis on residual stresses based on the neutron diffractometry as well as considerations concerning part deformations are presented.
Additive Layer manufacturing methods constitute an interesting alternative with respect to the production of small series and customized products. Among other advantages, these methods offer an extensive flexibility concerning end customer parts (Rapid Manufacturing) or tools for prototypes and small batches (Rapid Tooling). Up to recent years, machines using laser beams for the solidification of powder material, e.g. Selective Laser Melting, were available on the world market. However, the extensive use of the electron beam in manufacturing processes like welding or perforating revealed its considerable potentials. These are, among others, fast beam deflection, high beam power density as well as high efficiency. Therefore, commercial organizations and research institutions like the iwb make use of this energy source in additive layer manufacturing. The resulting technology Electron Beam Sintering (EBS) is characterized by a complex interaction of various process parameters. In this paper, methods of numerical simulation are used in order to model the process sequence of solidification and to define the governing factors. The heat transfer into the powder bed has been identified as a vital aspect concerning the process stability and the resulting part quality. Therefore, the interaction between beam and powder material is being examined in detail. First, the process is subdivided into discretized solidification steps which enable the definition of a certain system boundary. Second, the determining differential equations are being formed and, due to various boundary conditions, solved using a commercially available software package, implying the Finite Element Method (FEM). Third, the necessary energy input into the powder can be determined and finally, experimental series are being conducted in order to validate the numerical results and identify optimum process parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.