Vitamin E is an essential nutrient that was discovered in the 1920s. Many of the physiological functions of vitamin E, including its antioxidative effects, have been studied for nearly 100 years. Changes in redox balance induced by both endogenously and exogenously generated reactive oxygen species (ROS) are involved in various diseases, and are also a phenomenon that is considered essential for survival. Vitamin E is known to regulate redox balance in the body due to its high concentration among the lipid soluble vitamin groups, and exists ubiquitously in the whole body, including cell membranes and lipoproteins. However, it has been reported that the beneficial properties of vitamin E, including its antioxidative effects, are only displayed in vitro, and not in vivo. Therefore, there exists an ongoing debate regarding the biological functions of vitamin E and its relationship with redox balance. In this review, we introduce the relationship between vitamin E and redox interactions with (i) absorption, distribution, metabolism, and excretion of vitamin E, (ii) oxidative stress and ROS in the body, (iii) mechanism of antioxidative effects, (iv) non‐antioxidant functions of vitamin E, and (v) recent recognition of the field of oxidative stress research. Understanding the recent findings of the redox interaction of vitamin E may help to elucidate the different antioxidative phenomena observed for vitamin E in vitro and in vivo. © 2019 IUBMB Life, 71(4):430–441, 2019
Phospholipid hydroperoxides (PLOOH) accumulate abnormally in the erythrocytes of dementia patients, and dietary xanthophylls (polar carotenoids such as astaxanthin) are hypothesised to prevent the accumulation. In the present study, we conducted a randomised, double-blind, placebo-controlled human trial to assess the efficacy of 12-week astaxanthin supplementation (6 or 12 mg/d) on both astaxanthin and PLOOH levels in the erythrocytes of thirty middle-aged and senior subjects. After 12 weeks of treatment, erythrocyte astaxanthin concentrations were higher in both the 6 and 12 mg astaxanthin groups than in the placebo group. In contrast, erythrocyte PLOOH concentrations were lower in the astaxanthin groups than in the placebo group. In the plasma, somewhat lower PLOOH levels were found after astaxanthin treatment. These results suggest that astaxanthin supplementation results in improved erythrocyte antioxidant status and decreased PLOOH levels, which may contribute to the prevention of dementia. Key words: Astaxanthin: Phospholipid hydroperoxides: Erythrocytes: DementiaWe have previously confirmed that higher levels of phospholipid hydroperoxides (PLOOH), the primary oxidation products of phospholipids (PL) (1,2) , accumulate abnormally in the erythrocytes of dementia patients (3) . Such erythrocytes with high levels of lipid hydroperoxides have been postulated to have a decreased ability to transport oxygen to the brain, which may impair blood rheology, thus facilitating dementia (4 -8) . Recently, we have developed an HPLC method to determine erythrocyte carotenoid content (9) . Using this method, we gathered evidence that accumulation of polar oxygenated carotenoids (xanthophylls) occurs predominantly in human erythrocytes (9) , and that a decrease in xanthophylls and an increase in PLOOH levels in erythrocytes correlate with the severity of dementia (10) . These findings led to the hypothesis that xanthophyll supplementation may minimise the accumulation of erythrocyte PLOOH, and that xanthophylls could be used therapeutically as drugs or functional foods to prevent the disease. Although there is still scarce information on whether orally administered xanthophylls are distributed to human erythrocytes and actually inhibit erythrocyte PLOOH formation, our recent human study has revealed antioxidant properties of the xanthophyll lutein towards erythrocyte PLOOH formation (11) . Animal studies have also supported this hypothesis (12,13) .Among xanthophylls, astaxanthin has recently received attention for its potent antioxidant activity (14,15) . Astaxanthin is naturally synthesised by plants and algae, and is now commercially available as a food supplement from Haematococcus alga (16) . The recommended daily intake is estimated to be 1 -12 mg/d; however, there is not much information regarding the bioavailability of astaxanthin in humans. To the best of our knowledge, the occurrence and antioxidant roles of astaxanthin in human erythrocytes have not been reported.In this investigation of whether admini...
Tocotrienol (T3) is an important phytonutrient found in rice bran and palm oil. T3 has gained much interest for lipid lowering effects, especially for cholesterol (Cho) by inhibiting 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase. Also, usefulness of T3 in improving triglyceride (TG) profiles has been suggested, but its efficacy and mechanism have been unclear. We investigated how T3 decreases TG concentration in cultured cells and animals. In a cell culture study, human hepatoma cells (HepG2) were incubated in a control or a fat (1 mM oleic acid)‐loaded medium containing γ‐T3 for 24 h. We found that 10–15 μM γ‐T3 inhibited cellular TG accumulation significantly, especially in the fat‐loaded medium. This manifestation was supported by mRNA and protein expressions of fatty acid synthase, carnitine palmitoyltransferase 1, and cytochrome P450 3A4. In concordance with these results, rice bran T3 supplementation to F344 rats (5 or 10 mg T3/day/rat) receiving a high fat diet for 3 weeks significantly reduced TG and the oxidative stress marker (phospholipid hydroperoxides, PLOOH) in the liver and blood plasma. T3 supplementation did not show changes in the Cho level. These results provided new information and the mechanism of the TG‐lowering effect of T3. The lipid lowering effects of dietary T3 might be mediated by the reduction of TG synthesis.
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Obesity and other lipid metabolism-related diseases have become more prevalent in recent years due to drastic lifestyle changes and dietary patterns. Unsaturated vitamin E, tocotrienol (T3), represents one of the most fascinating naturally occurring compounds that has the potential to influence a broad range of mechanisms underlying abnormal lipid metabolism processes. However, its efficacy and mechanism have been uncertain due to scarcity of data concerning the effect of T3 on lipid metabolism. In this study, we report a series of fascinating experimental findings on how T3 affects lipid metabolism in differentiated 3T3-L1 preadipocytes. Treatment with T3 (25 μM), especially δ and γ isomers, inhibited the accumulation of triglyceride and lipid droplets in differentiated 3T3-L1 cells. This manifestation was supported by mRNA and protein expression of crucial lipid metabolism-related genes. The present study provides a novel set of data pertaining to the possibility of T3 as an anti-metabolic disorder agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.