Abstract. We study real-analytic Levi degenerate hypersurfaces M in complex manifolds of dimension 3, for which the CR-automorphism group Aut(M ) is a real Lie group acting transitively on M . We provide large classes of examples for such M , compute the corresponding groups Aut(M ) and determine the maximal subsets of M that cannot be separated by global continuous CR-functions. It turns out that all our examples, although partly arising in different contexts, are locally CR-equivalent to the tube T = C × i 3 ⊂ ¼ 3 over the future light cone3 , x 3 > 0} in 3-dimensional space-time.
For every real-analytic CR-manifold M we give necessary and sufficient conditions that M can be realized in a suitable neighbourhood of a given point a ∈ M as a tube submanifold of some C r . We clarify the question of the 'right' equivalence between two local tube realizations of the CR-manifold germ (M, a) by introducing two different notions of affine equivalence. One of our key results is a procedure that reduces the classification of equivalence classes to a purely algebraic manipulation in terms of Lie theory.
Abstract. -A real form G of a complex semi-simple Lie group G C has only finitely many orbits in any given G C -flag manifold Z = G C /Q. The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits D generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of D which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains Ω W (D) in G C /K C , where K is a maximal compact subgroup of G. Thus, for the various domains D in the various ambient spaces Z, it is possible to compare the cycle spaces Ω W (D). The main result here is that, with the few exceptions mentioned above, for a fixed real form G all of the cycle spaces Ω W (D) are the same. They are equal to a universal domain Ω AG which is natural from the the point of view of group actions and which, in essence, can be explicitly computed. The essential technical result is that if b Ω is a G-invariant Stein domain which contains Ω AG and which is Kobayashi hyperbolic, then b Ω = Ω AG . The equality of the cycle domains follows from the fact that every Ω W (D) is itself Stein, is hyperbolic, and contains Ω AG .
FELS (G.) & HUCKLEBERRY (A.)Résumé (Caractérisation de domaines de cycles par l'hyperbolicité au sens de Kobayashi) Une forme réelle G d'un groupe de Lie semi-simple G C n'admet qu'un nombre fini d'orbites dans toute G C -variété de drapeaux Z = G C /Q. La géométrie complexe de ces orbites est intéressante, par exemple pour la théorie de la représentation associée. Les fonctions holomorphes sur les orbites ouvertes D de G sont constantes en général ; les objets géométriques importants liésà ces orbites sont des sous-variétés complexes de D de dimension positives qui,à quelques rares exceptions bien comprises, sont paramétrées par les domaines de cycles de Wolf Ω W (D) ∈ G C /K C , où K est un sous-groupe maximal compact de G. Alors, pour les domaines D dans les variétés ambiantes Z, il est possible de comparer les domaines de cycles Ω W (D
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.