The adoption of deep learning models has brought significant performance improvements across several research fields, such as computer vision and natural language processing. However, their "black-box" nature yields the downside of poor explainability: in particular, several real-world applications require -to varying extents -reliable confidence scores associated to a model's prediction. The relation between a model's accuracy and confidence is typically referred to as calibration. In this work, we propose a novel calibration method based on gradient accumulation in conjunction with existing loss regularization techniques. Our experiments on the Named Entity Recognition task show an improvement of the performance/calibration ratio compared to the current methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.