Global pressure and temperature 2 wet (GPT2w) is an empirical troposphere delay model providing the mean values plus annual and semiannual amplitudes of pressure, temperature and its lapse rate, water vapor pressure and its decrease factor, weighted mean temperature, as well as hydrostatic and wet mapping function coefficients of the Vienna mapping function 1. All climatological parameters have been derived consistently from monthly mean pressure level data of ERA-Interim fields (European Centre for Medium-Range Weather Forecasts Re-Analysis) with a horizontal resolution of 1°, and the model is suitable to calculate slant hydrostatic and wet delays down to 3°elevation at sites in the vicinity of the earth surface using the date and approximate station coordinates as input. The wet delay estimation builds upon gridded values of the water vapor pressure, the weighted mean temperature, and the water vapor decrease factor, with the latter being tuned to ray-traced zenith wet delays. Comparisons with zenith delays at 341 globally distributed global navigation satellite systems stations show that the mean bias over all stations is below 1 mm and the mean standard deviation is about 3.6 cm. The GPT2w model with the gridded input file is provided at http://ggosatm.hg. tuwien.ac.at/DELAY/SOURCE/GPT2w/.
Abstract. Initial objectives and design of the Benchmark campaign organized within the European COST Action ES1206
Abstract. An extensive validation of line-of-sight tropospheric slant total delays (STD) from Global Navigation Satellite Systems (GNSS), ray tracing in numerical weather prediction model (NWM) fields and microwave water vapour radiometer (WVR) is presented. Ten GNSS reference stations, including collocated sites, and almost 2 months of data from 2013, including severe weather events were used for comparison. Seven institutions delivered their STDs based on GNSS observations processed using 5 software programs and 11 strategies enabling to compare rather different solutions and to assess the impact of several aspects of the processing strategy. STDs from NWM ray tracing came from three institutions using three different NWMs and ray-tracing software. Inter-techniques evaluations demonstrated a good mutual agreement of various GNSS STD solutions compared to NWM and WVR STDs. The mean bias among GNSS solutions not considering post-fit residuals in STDs was −0.6 mm for STDs scaled in the zenith direction and the mean standard deviation was 3.7 mm. Standard deviations of comparisons between GNSS and NWM ray-tracing solutions were typically 10 mm ± 2 mm (scaled in the zenith direction), depending on the NWM model and the GNSS station. Comparing GNSS versus WVR STDs reached standard deviations of 12 mm ± 2 mm also scaled in the zenith direction. Impacts of raw GNSS post-fit residuals and cleaned residuals on optimal reconstructing of GNSS STDs were evaluated at intertechnique comparison and for GNSS at collocated sites. The use of raw post-fit residuals is not generally recommended as they might contain strong systematic effects, as demonstrated in the case of station LDB0. Simplified STDs reconstructed only from estimated GNSS tropospheric parameters, i.e. without applying post-fit residuals, performed the best in all the comparisons; however, it obviously missed part of tropospheric signals due to non-linear temporal and spatial variations in the troposphere. Although the post-fit residuals cleaned of visible systematic errors generally showed a slightly worse performance, they contained significant tropospheric signal on top of the simplified model. They are thus recommended for the reconstruction of STDs, particularly during high variability in the troposphere. Cleaned residuals also showed a stable performance during ordinary days while containing promising information about the troposphere at low-elevation angles.
GPS tomography has been investigated since 2000 as an attractive tool for retrieving the 3D field of water vapour and wet refractivity. However, this observational technique still remains a challenging task that requires improvement of its methodology. This was the purpose of this study, and for this, GPS data from the Australian Continuously Operating Research Station (CORS) network during a severe weather event were used. Sensitivity tests and statistical cross-comparisons of tomography retrievals with independent observations from radiosonde and radio-occultation profiles showed improved results using the presented methodology. The initial conditions, which were associated with different time-convergence of tomography inversion, play a critical role in GPS tomography. The best strategy can reduce the normalised root mean square (RMS) of the tomography solution by more than 3 with respect to radiosonde estimates. Data stacking and pseudo-slant observations can also significantly improve tomography retrievals with respect to non-stacked solutions. A normalised RMS improvement up to 17% in the 0-8 km layer was found by using 30 min data stacking, and RMS values were divided by 5 for all the layers by using pseudo-observations. This result was due to a better geometrical distribution of mid-and low-tropospheric parts (a 30% coverage improvement). Our study of the impact of the uncertainty of GPS observations shows that there is an interest in evaluating tomography retrievals in comparison to independent external measurements and in estimating simultaneously the quality of weather forecasts. Finally, a comparison of multi-model tomography with numerical weather prediction shows the relevant use of tomography retrievals to improving the understanding of such severe weather conditions. Global Positioning System (GPS) tomography considers the use of slant-integrated estimates, wet delays, or corresponding water vapour content estimated from the data records of ground-based GPS stations to respectively retrieve the 3D field of wet refractivity or water vapour density, as introduced by [1,2]. Comparisons of tomography retrievals with other techniques (e.g., those using a water vapour radiometer, radiosonde, raman lidar, or atmospheric emitted radiance interferometer) and with numerical weather models have shown relevant results and an encouraging understanding of meteorological situations ([3-17]) The resolution and configuration/geometry of the network of GPS stations are critical parameters with which to obtain the best scenario for applying GPS tomography to retrieve water vapour density or wet refractivity. These fields can be ideally retrieved for meteorological applications with a horizontal resolution of a few kilometres, a vertical resolution of~500 m in the lower troposphere, and a vertical resolution of~2 km in the upper troposphere, with a time resolution of 15 to 5 min. However, to obtain this remarkable geometrical resolution, data from a dense homogeneously distributed network of GPS stations (e.g., a netw...
Abstract. In Global Navigation Satellite System (GNSS) tomography, precise information about the tropospheric water vapor distribution is derived from integral measurements like ground-based GNSS slant wet delays (SWDs). Therefore, the functional relation between observations and unknowns, i.e., the signal paths through the atmosphere, have to be accurately known for each station–satellite pair involved. For GNSS signals observed above a 15∘ elevation angle, the signal path is well approximated by a straight line. However, since electromagnetic waves are prone to atmospheric bending effects, this assumption is not sufficient anymore for lower elevation angles. Thus, in the following, a mixed 2-D piecewise linear ray-tracing approach is introduced and possible error sources in the reconstruction of the bended signal paths are analyzed in more detail. Especially if low elevation observations are considered, unmodeled bending effects can introduce a systematic error of up to 10–20 ppm, on average 1–2 ppm, into the tomography solution. Thereby, not only the ray-tracing method but also the quality of the a priori field can have a significant impact on the reconstructed signal paths, if not reduced by iterative processing. In order to keep the processing time within acceptable limits, a bending model is applied for the upper part of the neutral atmosphere. It helps to reduce the number of processing steps by up to 85 % without significant degradation in accuracy. Therefore, the developed mixed ray-tracing approach allows not only for the correct treatment of low elevation observations but is also fast and applicable for near-real-time applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.