Pit membranes in bordered pits of tracheary elements of angiosperm xylem represent primary cell walls that undergo structural and chemical modifications, not only during cell death but also during and after their role as safety valves for water transport between conduits. Cellulose microfibrils, which are typically grouped in aggregates with a diameter between 20 to 30 nm, make up their main component. While it is clear that pectins and hemicellulose are removed from immature pit membranes during hydrolysis, recent observations of amphiphilic lipids and proteins associated with pit membranes raise important questions about drought-induced embolism formation and spread via air-seeding from gas-filled conduits. Indeed, mechanisms behind air-seeding remain poorly understood, which is due in part to little attention paid to the three-dimensional structure of pit membranes in earlier studies. Based on perfusion experiments and modelling, pore constrictions in fibrous pit membranes are estimated to be well below 50 nm, and typically smaller than 20 nm. Together with the low dynamic surface tensions of amphiphilic lipids at air-water interfaces in pit membranes, 5 to 20 nm pore constrictions are in line with the observed xylem water potentials values that generally induce spread of embolism. Moreover, pit membranes appear to show ideal porous medium properties for sap flow to promote hydraulic efficiency and safety due to their very high porosity (pore volume fraction), with highly interconnected, non-tortuous pore pathways, and the occurrence of multiple pore constrictions within a single pore. This three-dimensional view of pit membranes as mesoporous media may explain the relationship between pit membrane thickness and embolism resistance, but is largely incompatible with earlier, two-dimensional views on air-seeding. It is hypothesised that pit membranes enable water transport under negative pressure by producing stable, surfactant coated nanobubbles while preventing the entry of large bubbles that would cause embolism.
In this work, independent radial diffusion at arrayed nanointerfaces between two immiscible electrolyte solutions (nanoITIES) was achieved. The arrays were formed at nanopores fabricated by focused ion beam milling of silicon nitride (SiN) membranes, enabling the reproducible and systematic design of five arrays with different ratios of pore center-to-center distance (rc) to pore radius (ra). Voltammetry across water-1,6-dichlorohexane nanoITIES formed at these arrays was examined by the interfacial transfer of tetrapropylammonium ions. The diffusion-limited ion-transfer current increased with the ratio rc/ra, reaching a plateau for rc/ra ≥ 56, which was equivalent to the theoretical current for radial diffusion to an array of independent nanoITIES. As a result, mass transport to the nanoITIES arrays was greatly enhanced due to the decreased overlap of diffusion zones at adjacent nanoITIES, allowing each interface in the array to behave independently. When the rc/ra ratio increased from 13 to 56, the analytical performance parameters of sensitivity and limit of detection were improved from 0.50 (±0.02) A M(-1) to 0.76 (±0.02) A M(-1) and from 0.101 (±0.003) μM to 0.072 (±0.002) μM, respectively. These results provide an experimental basis for the design of arrayed nanointerfaces for electrochemical sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.