A parameter estimation problem for a class of semilinear stochastic evolution equations is considered. Conditions for consistency and asymptotic normality are given in terms of growth and continuity properties of the nonlinear part. Emphasis is put on the case of stochastic reaction-diffusion systems. Robustness results for statistical inference under model uncertainty are provided.Note that the derivation ofθ N is purely heuristic, so asymptotic properties of the estimator cannot be simply derived from the general theory of maximum likelihood estimation (as presented e.g. in [18]).
A theory for diffusivity estimation for spatially extended activator–inhibitor dynamics modeling the evolution of intracellular signaling networks is developed in the mathematical framework of stochastic reaction–diffusion systems. In order to account for model uncertainties, we extend the results for parameter estimation for semilinear stochastic partial differential equations, as developed in Pasemann and Stannat (Electron J Stat 14(1):547–579, 2020), to the problem of joint estimation of diffusivity and parametrized reaction terms. Our theoretical findings are applied to the estimation of effective diffusivity of signaling components contributing to intracellular dynamics of the actin cytoskeleton in the model organism Dictyostelium discoideum.
Motivated by problems from statistical analysis for discretely sampled SPDEs, first we derive central limit theorems for higher order finite differences applied to stochastic process with arbitrary finitely regular paths. These results are proved by using the notion of ∆-power variations, introduced herein, along with the Hölder-Zygmund norms. Consequently, we prove a new central limit theorem for ∆-power variations of the iterated integrals of a fractional Brownian motion (fBm). These abstract results, besides being of independent interest, in the second part of the paper are applied to estimation of the drift and volatility coefficients of semilinear stochastic partial differential equations in dimension one, driven by an additive Gaussian noise white in time and possibly colored in space. In particular, we solve the earlier conjecture from [CKL20] about existence of a nontrivial bias in the estimators derived by naive approximations of derivatives by finite differences. We give an explicit formula for the bias and derive the convergence rates of the corresponding estimators. Theoretical results are illustrated by numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.