Objectives Coronavirus disease 2019 (COVID-19) associated pulmonary aspergillosis (CAPA) has emerged as a complication in critically ill COVID-19 patients. The objectives of this multinational study were to determine the prevalence of CAPA in patients with COVID-19 in intensive care units (ICU) and to investigate risk factors for CAPA as well as outcome. Methods The European Confederation of Medical Mycology (ECMM) conducted a multinational study including 20 centers from nine different countries to assess epidemiology, risk factors, and outcome of CAPA. CAPA was defined according to the 2020 ECMM/ISHAM consensus definitions. Results A total of 592 patients were included in this study, including 11 (1.9%) patients with histologically proven CAPA, 80 (13.5%) patients with probable CAPA, 18 (3%) with possible CAPA and 483 (81.6%) without CAPA. CAPA was diagnosed a median of 8 days (range 0-31) after ICU admission predominantly in older patients [adjusted hazard ratio (aHR) 1.04 per year; 95%CI 1.02-1.06] with any form of invasive respiratory support (HR 3.4; 95%CI 1.84-6.25) and receiving tocilizumab (HR 2.45; 95%CI 1.41-4.25). Median prevalence of CAPA per center was 10.7% (range 1.7%-26.8%). CAPA was associated with significantly lower 90-day ICU survival rate (29% in patients with CAPA versus 57% in patients without CAPA; Mantel-Byar p<0.001 ) and remained an independent negative prognostic variable after adjusting for other predictors of survival (HR=2.14; 95%CI: 1.59-2.87, p<=0.001 ). Conclusion Prevalence of CAPA varied between centers. CAPA was significantly more prevalent among older patients, patients receiving invasive ventilation and patients receiving tocilizumab, and was an independent strong predictor of ICU mortality.
Background: COVID-19 convalescent plasma (CCP) has been considered a treatment option in COVID-19. This trial assessed the efficacy of neutralizing antibody containing high-dose CCP in hospitalized adults with COVID-19 requiring respiratory support or intensive care treatment.Methods: Patients (n=105) were randomized 1:1 to either receive standard treatment and 3 units of CCP or standard treatment alone. Control group patients with progress on day 14 could cross over to the CCP group. Primary outcome was a dichotomous composite outcome of survival and no longer fulfilling criteria for severe COVID-19 on day 21. Results:The primary outcome occurred in 43.4% of patients in the CCP and 32.7% in the control group (p=0.32). The median time to clinical improvement was 26 days in the CCP group and 66 days in the control group (p=0.27). Median time to discharge from hospital was 31 days in the CCP and 51 days in the control group (p=0.24). In the subgroup that received a higher cumulative amount of neutralizing antibodies the primary outcome occurred in 56.0% (versus 32.1%), with significantly shorter intervals to clinical improvement (20 versus 66 days)(p<0.05), and to hospital discharge (21 versus 51 days, p=0.03) and better survival (day-60 probability of survival 91.6% versus 68.1%; p=0.02) compared to the control group. Conclusion:CCP added to standard treatment was not associated with significant improvement in the primary and secondary outcomes. A pre-defined subgroup analysis showed a significant benefit for CCP among those who received a larger amount of neutralizing antibodies.
Background Interleukin-10 is a pleiotropic cytokine, whose main function is limitation and ultimately termination of immune responses. This is especially true for environmental interfaces such as the gastrointestinal tract. IL-10 acts as a key mediator for maintaining gut homeostasis. IL-10 knockout mice are well established as a genetic model for inflammatory bowel disease (IBD), and sequence variants in the IL-10 locus contribute to ulcerative colitis (UC).
Patients with inflammatory bowel disease (IBD) have a higher risk of developing colitis-associated-cancer (CAC), however, the underlying processes of disease progression are not completely understood. Here, the molecular processes of inflammation-driven colon carcinogenesis were investigated using IL-10 deficient mice (IL-10 KO). IL-10 KO mice were euthanized after development of colitis and dysplasia. Immunohistochemistry Enhanced DSBs in IL-10 KO organoids were confirmed by comet-assay and increased expression of γH2AX. Human clinical specimens exhibited significantly higher γH2AX and 8-oxoG in IBD, dysplasia and CAC compared to normal mucosa.These data indicate that inflammation-driven colon carcinogenesis in IL-10 KO mice and IBD patients is associated with oxidative DNA damage and overt presence of DSB.on May 9, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.