No abstract
Abstract. The studied area of the northwestern (NW) Dinarides is located in the northeastern (NE) corner of the Adriatic microplate and is bordered by the Adriatic foreland, the Southern Alps, and the Pannonian basin. Its complex crustal structure is the result of interactions among different tectonic units, the most important of which are the Eurasian plate and the Adriatic microplate. Despite numerous seismic studies in this tectonically complex area, there is still a need for a detailed, small-scale study focusing mainly on the upper, brittle part of the crust. In this work, we investigated the velocity structure of the crust with one-dimensional (1-D) simultaneous hypocenter–velocity inversion using routinely picked P- and S-wave arrival times. Most of the models computed in the combined P and S inversion converged to a stable solution in the depth range between 0 and 26 km. We further evaluated the inversion results with hypocenter shift tests, high- and low-velocity tests, and relocations. This helped us to select the best performing velocity model for the entire study area. Based on these results and the seismicity distribution, we divided the study area into three subregions, reselected earthquakes and stations, and performed the combined P and S inversion for each subregion separately to gain better insight into the crustal structure. In the eastern subregion, the P velocities in the upper 8 km of the crust are lower compared to the regional velocities and the velocities of the other two subregions. The P velocities between 8 and 23 km depth are otherwise very similar for all three models. Conversely, the S velocities between 2 and 23 km depth are highest in the eastern subregion. The NW and southwestern (SW) subregions are very similar in terms of the crustal structure between 0 and 23 km depth, with slightly higher P velocities and lower S velocities in the SW subregion. High vP/vS values were obtained for the layers between 0 and 4 km depth. Below that, no major deviations of vP/vS in the regional model from the value of 1.73 are observed, but in each subregion we can clearly distinguish two zones separated by a decrease in vP/vS at 16 km depth. Compared to the model currently used by the Slovenian Environment Agency to locate earthquakes, the obtained velocity models show higher velocities and agree very well with some of the previous studies. In addition to the general structural implications and the potential to improve the results of seismic tomography, the new 1-D P and S velocity models can also be used for reliable routine earthquake location and for detecting systematic travel time errors in seismological bulletins.
Abstract. The investigated area of the NW Dinarides is located at the NE corner of the Adriatic microplate and is bordered by the Adriatic foreland, the Southern Alps, and the Pannonian basin. Its complex crustal structure is the result of interactions among different tectonic units, mainly the Eurasian plate and the Adriatic microplate. Despite numerous seismic studies in this tectonically complex area, there is still a need for a detailed, small scale study focusing mainly on the upper, brittle part of the crust. We investigated the crustal velocity structure with 1-D simultaneous hypocenter-velocity inversion using routinely picked P wave arrival times. Most of the computed models converged to a stable solution in the depth range between 0 and 26 km. We further evaluated the inversion results with hypocenter shift tests, high and low velocity tests, and relocations. This helped us to select two best performing velocity models for the whole study area. Based on these results and the seismicity distribution, we further divided the study area into three parts, redefined the earthquake-station geometry, and performed inversion for each part separately to gain better insight into the crustal structure of each subregion. Median velocities in the upper 20 km of the crust in the eastern subregion are lower compared to the regional median and the median of the other two subregions. The northwestern and southwestern subregions are very similar in terms of crustal structure between about 8 and 23 km depth. The largest difference between them is observed in the upper 8 km, with higher median velocities in the southwestern subregion. Compared to the model currently used at Slovenian Environment Agency to locate earthquakes, the velocity models obtained show higher velocities in the upper 30 km depth and agree very well with some of the previous studies. In addition to general structural implications and a potential for improving seismic tomography results, the new 1-D velocity models can also be used for fast routine earthquake location and for detecting systematic travel time errors in seismological bulletins.
<p>The investigated area of the NW Dinarides is bordered by the Adriatic foreland, the Southern Alps, and the Pannonian basin at the NE corner of the Adriatic Sea. Its complex crustal structure is the result of interactions among different tectonic units. Despite numerous seismic studies taking place in this region, there still exists a need for a detailed, smaller scale study focusing mainly on the brittle part of the Earth's crust. Therefore, we decided to investigate the velocity structure of the crust using concepts of local earthquake tomography (LET) and minimum 1-D velocity model. Here, we present the results of the 1-D velocity modeling and the catalogue of the relocated seismicity. A minimum 1-D velocity model is computed by simultaneous inversion for hypocentral and velocity parameters together with seismic station corrections and represents the best fit to the observed arrival times.</p><p>We used 15,579 routinely picked P wave arrival times from 631 well-located earthquakes that occurred in Slovenia and in its immediate surroundings (mainly NW Croatia). Various initial 1-D velocity models, differing in velocity and layering, were used as input for velocity inversion in the VELEST program. We also varied several inversion parameters during the inversion runs. Most of the computed 1-D velocity models converged to a stable solution in the depth range between 0 and 25 km. We evaluated the inversion results using rigorous testing procedures and selected two best performing velocity models. Each of these models will be used independently as the initial model in the simultaneous hypocenter-velocity inversion for a 3-D velocity structure in LET. Based on the results of the 1-D velocity modeling, seismicity distribution, and tectonics, we divided the study area into three parts, redefined the earthquake-station geometry, and performed the inversion for each part separately. This way, we gained a better insight into the shallow velocity structure of each subregion and were able to demonstrate the differences among them.</p><p>Besides general structural implications and a potential to improve the results of LET, the new 1-D velocity models along with station corrections can also be used in fast routine earthquake location and to detect systematic travel time errors in seismological bulletins, as already shown by some studies using similar methods.</p>
SupplementTable S1: Uncertainty classes as defined for the routine daily analysis at ARSO and corresponding numbers of routinely picked first arrival times. All arrival times were picked by hand and uncertainty intervals subjectively determined by the analysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.