Producers, such as plants and algae, acquire nutrients from inorganic sources that are supplied primarily by decomposers whereas decomposers, mostly fungi and bacteria, acquire carbon from organic sources that are supplied primarily by producers. This producer-decomposer co-dependency is important in governing ecosystem processes, which implies that the impacts of declining biodiversity on ecosystem functioning should be strongly influenced by this process. Here we show, by simultaneously manipulating producer (green algal) and decomposer (heterotrophic bacterial) diversity in freshwater microcosms, that algal biomass production varies considerably among microcosms (0.0-0.67 mg ml(-1)), but that neither algal nor bacterial diversity by itself can explain this variation. Instead, production is a joint function of both algal and bacterial diversity. Furthermore, the range in algal production in microscosms in which bacterial diversity was manipulated was nearly double (1.82 times) that of microcosms in which bacterial diversity was not manipulated. Measures of organic carbon use by bacteria in these microcosms indicate that carbon usage is the mechanism responsible for these results. Because both producer and microbial diversity respond to disturbance and habitat modification, the main causes of biodiversity loss, these results suggest that ecosystem response to changing biodiversity is likely to be more complex than other studies have shown.
Worldwide, many species are responding to ongoing climate change with shifts in distribution, abundance, phenology, or behavior. Consequently, naturalresource managers face increasingly urgent conservation questions related to biodiversity loss, expansion of invasive species, and deteriorating ecosystem services. We argue that our ability to address these questions is hampered by the lack of explicit consideration of species' adaptive capacity (AC). AC is the ability of a species or population to cope with climatic changes and is characterized by three fundamental components: phenotypic plasticity, dispersal ability, and genetic diversity. However, few studies simultaneously address all elements; often, AC is confused with sensitivity or omitted altogether from climate-change vulnerability assessments. Improved understanding, consistent definition, and comprehensive evaluations of AC are needed. Using classic ecological-niche theory as an analogy, we propose a new paradigm that considers fundamental and realized AC: the former reflects aspects inherent to species, whereas the latter denotes how extrinsic factors constrain AC to what is actually expressed or observed. Through this conceptualization, we identify ecological attributes contributing to AC, outline areas of research necessary to advance understanding of AC, and provide examples demonstrating how the inclusion of AC can better inform conservation and natural-resource management.
Climate change will affect not only natural and cultural resources within protected areas but also tourism and visitation patterns. The U.S. National Park Service systematically collects data regarding its 270+ million annual recreation visits, and therefore provides an opportunity to examine how human visitation may respond to climate change from the tropics to the polar regions. To assess the relationship between climate and park visitation, we evaluated historical monthly mean air temperature and visitation data (1979–2013) at 340 parks and projected potential future visitation (2041–2060) based on two warming-climate scenarios and two visitation-growth scenarios. For the entire park system a third-order polynomial temperature model explained 69% of the variation in historical visitation trends. Visitation generally increased with increasing average monthly temperature, but decreased strongly with temperatures > 25°C. Linear to polynomial monthly temperature models also explained historical visitation at individual parks (R2 0.12-0.99, mean = 0.79, median = 0.87). Future visitation at almost all parks (95%) may change based on historical temperature, historical visitation, and future temperature projections. Warming-mediated increases in potential visitation are projected for most months in most parks (67–77% of months; range across future scenarios), resulting in future increases in total annual visits across the park system (8–23%) and expansion of the visitation season at individual parks (13–31 days). Although very warm months at some parks may see decreases in future visitation, this potential change represents a relatively small proportion of visitation across the national park system. A changing climate is likely to have cascading and complex effects on protected area visitation, management, and local economies. Results suggest that protected areas and neighboring communities that develop adaptation strategies for these changes may be able to both capitalize on opportunities and minimize detriment related to changing visitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.