Weitzenböck formulas are an important tool in relating local differential geometry to global topological properties by means of the so-called Bochner method. In this article we give a unified treatment of the construction of all possible Weitzenböck formulas for all irreducible, non-symmetric holonomy groups. We explicitly construct a basis of the space of Weitzenböck formulas. This classification allows us to find customized Weitzenböck formulas for applications such as eigenvalue estimates or Betti number estimates.
We consider the Dirac operator on compact quaternionic Kähler manifolds and prove a lower bound for the spectrum. This estimate is sharp since it is the first eigenvalue of the Dirac operator on the quaternionic projective space.
We show any Riemannian curvature model can be geometrically realized by a manifold with constant scalar curvature. We also show that any pseudo-Hermitian curvature model, para-Hermitian curvature model, hyperpseudo-Hermitian curvature model, or hyper-para-Hermitian curvature model can be realized by a manifold with constant scalar and ⋆-scalar curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.