In this work, the geometric and electronic structure of N species in N-doped carbon nanotubes (NCNTs) is derived by X-ray photoemission (XPS) and absorption spectroscopy (NEXAFS) of the N 1s core excitation. Substitutional N species in pyridine-like configuration and another form of N with higher thermal stability are found in NCNTs. The structural configuration of the high thermally stable N species, in the literature often referred to as graphitic N, is assessed in this work by a combined theoretical and experimental study as a 3-fold substitutional N species in an NCNT basic structural unit (BSU). Furthermore, the nature of the interaction of those N species with a Pd metal center immobilized onto NCNTs is of σ-type donation from the filled π-orbital of the N atom to the empty d-orbital of the Pd atom and a π back-donation from the filled Pd atomic d-orbital to the π* antibonding orbital of the N atom. We have found that the interaction of pyridine N with Pd is characterized by a charge transfer typical of a covalent chemical bond with partial ionic character, consistent with the chemical shift observed in the Pd 3d core level of divalent Pd. Graphitic N sites interact with Pd by a covalent bond without any charge redistribution. In this case, the electronic state of the Pd corresponds to metallic Pd nanoparticles electronically modified by the interaction with the support. The catalytic reactivity of these samples in hydrogenation, CO oxidation, and oxygen reduction reaction (ORR) allowed clarifying some aspects of the metal carbon support interaction in catalysis.
Replacing noble metals in heterogeneous catalysts by low-cost substitutes has driven scientific and industrial research for more than 100 years. Cheap and ubiquitous iron is especially desirable, because it does not bear potential health risks like, for example, nickel. To purify the ethylene feed for the production of polyethylene, the semi-hydrogenation of acetylene is applied (80 × 10(6) tons per annum; refs 1-3). The presence of small and separated transition-metal atom ensembles (so-called site-isolation), and the suppression of hydride formation are beneficial for the catalytic performance. Iron catalysts necessitate at least 50 bar and 100 °C for the hydrogenation of unsaturated C-C bonds, showing only limited selectivity towards semi-hydrogenation. Recent innovation in catalytic semi-hydrogenation is based on computational screening of substitutional alloys to identify promising metal combinations using scaling functions and the experimental realization of the site-isolation concept employing structurally well-ordered and in situ stable intermetallic compounds of Ga with Pd (refs 15-19). The stability enables a knowledge-based development by assigning the observed catalytic properties to the crystal and electronic structures of the intermetallic compounds. Following this approach, we identified the low-cost and environmentally benign intermetallic compound Al(13)Fe(4) as an active and selective semi-hydrogenation catalyst. This knowledge-based development might prove applicable to a wide range of heterogeneously catalysed reactions.
Discussed are the recent experimental and theoretical results on palladium-based catalysts for selective hydrogenation of alkynes obtained by a number of collaborating groups in a joint multi-method and multi-material approach. The critical modification of catalytically active Pd surfaces by incorporation of foreign species X into the sub-surface of Pd metal was observed by in situ spectroscopy for X=H, C under hydrogenation conditions. Under certain conditions (low H2 partial pressure) alkyne fragmentation leads to formation of a PdC surface phase in the reactant gas feed. The insertion of C as a modifier species in the sub-surface increases considerably the selectivity of alkyne semi-hydrogenation over Pd-based catalysts through the decoupling of bulk hydrogen from the outmost active surface layer. DFT calculations confirm that PdC hinders the diffusion of hydridic hydrogen. Its formation is dependent on the chemical potential of carbon (reactant partial pressure) and is suppressed when the hydrogen/alkyne pressure ratio is high, which leads to rather unselective hydrogenation over in situ formed bulk PdH. The beneficial effect of the modifier species X on the selectivity, however, is also present in intermetallic compounds with X=Ga. As a great advantage, such PdxGay catalysts show extended stability under in situ conditions. Metallurgical, clean samples were used to determine the intrinsic catalytic properties of PdGa and Pd3Ga7. For high performance catalysts, supported nanostructured intermetallic compounds are more preferable and partial reduction of Ga2O3, upon heating of Pd/Ga2O3 in hydrogen, was shown to lead to formation of PdGa intermetallic compounds at moderate temperatures. In this way, Pd5Ga2 and Pd2Ga are accessible in the form of supported nanoparticles, in thin film models, and realistic powder samples, respectively
A two-step synthesis for the preparation of single-phase and nanoparticulate GaPd and GaPd(2) by coreduction of ionic metal-precursors with LiHBEt(3) in THF without additional stabilizers is described. The coreduction leads initially to the formation of Pd nanoparticles followed by a Pd-mediated reduction of Ga(3+) on their surfaces, requiring an additional annealing step. The majority of the intermetallic particles have diameters of 3 and 7 nm for GaPd and GaPd(2), respectively, and unexpected narrow size distributions as determined by disk centrifuge measurements. The nanoparticles have been characterized by XRD, TEM, and chemical analysis to ensure the formation of the intermetallic compounds. Unsupported nanoparticles possess high catalytic activity while maintaining the excellent selectivity of the ground bulk materials in the semihydrogenation of acetylene. The activity could be further increased by depositing the particles on α-Al(2)O(3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.