Thioredoxins are small multifunctional redox active proteins widely if not universally distributed among living organisms. In chloroplasts, two types of thioredoxins ( f and m) coexist and play central roles in regulating enzyme activity. Reduction of thioredoxins in chloroplasts is catalyzed by an iron-sulfur disulfide enzyme, ferredoxin-thioredoxin reductase, that receives photosynthetic electrons from ferredoxin, thereby providing a link between light and enzyme activity. Chloroplast thioredoxins function in the regulation of the Calvin cycle and associated processes. However, the relatively small number of known thioredoxin-linked proteins (about 16) raised the possibility that others remain to be identified. To pursue this opportunity, we have mutated thioredoxins f and m, such that the buried cysteine of the active disulfide has been replaced by serine or alanine, and bound them to affinity columns to trap target proteins of chloroplast stroma. The covalently linked proteins were eluted with DTT, separated on gels, and identified by mass spectrometry. This approach led to the identification of 15 potential targets that function in 10 chloroplast processes not known to be thioredoxin linked. Included are proteins that seem to function in plastid-to-nucleus signaling and in a previously unrecognized type of oxidative regulation. Approximately two-thirds of these targets contained conserved cysteines. We also identified 11 previously unknown and 9 confirmed target proteins that are members of pathways known to be regulated by thioredoxin. In contrast to results with individual enzyme assays, specificity for thioredoxin f or m was not observed on affinity chromatography.
Spinach chloroplast thioredoxin f has a third cysteine residue which is surface exposed and close to the active site disulfide. In addition its N-terminus is rather long compared to other thioredoxins. By site-directed mutagenesis the third cysteine has been replaced, the long N-terminal tail has been removed and the properties of the modified proteins have been examined. Truncation of the N-terminus renders the protein more soluble and stable and has little influence on its catalytic capacities. Replacement of the exposed third cysteine clearly impairs its capacity to interact and reduce target enzymes and shows that this cysteine can be involved in homo-dimer formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.