Studies of thermal level‐related asynchrony in a host–parasitoid relationship are necessary to understand the effects of climate change on new host–parasitoid interactions. In the Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) and its Chalcidoidea parasitoids, phenological synchrony is assumed to be weather‐dependent in a new area of expansion. To evaluate the effects of environmental thermal regimes on the host, a phenology model for different cynipid stages (larvae, pupae, adults, and adult emergence) and a host–parasitoid phenological estimator are developed in three chestnut fields during two successive growth seasons and subsequently validated in areas with chestnut fields at two different altitudes. Comparisons of the timings of the juvenile and adult stages with those of the parasitoid complex demonstrate that the shortest period of occurrence for cynipids within galls has negative effects on the host–parasitoid relationships at higher temperature levels, thereby increasing phenological asynchrony for some parasitoids species. Reducing the development time of pupae and adults decreases the likelihood of success for some parasitoid species at higher temperature levels. We also record the extension of the gall wasp development time (approximately 15 days) at higher altitudes (linked to a lower mean temperature of approximately 1.5 °C). These results highlight how parasitization on the new hosts is dependent on the host phenology and, in the present study, is limited by the short duration of the presence of the host in galls, which could explain the considerable differences in cynipid gall wasp parasitization recorded at different altimeters.
Several thrips species (Insecta, Thysanoptera) are globally known as important crop pests and vectors of viral diseases, but their identification is difficult because of their small body size and inconspicuous morphological differences. Sequencing variation in the mitochondrial cytochrome c oxidase I (COI) region has been proven to be useful for the identification of species of many groups of insect pests. Here, DNA barcoding has been used to identify thrips species collected with the use of sticky traps placed in an open onion field. A total of 238 thrips specimens were analyzed, 151 of which could be identified to species and 27 to genera belonging to the family Thripidae. Fifty-one specimens could not be assigned to any genus, with the closest BLAST match in the GenBank queries being below 98%, whilst six specimens were not recognized as Thysanoptera. The results indicate that, although there are a few pest thrips species not yet barcoded, most of the species that may cause damage to crops in Europe are represented in GenBank and other databases, enabling correct identification. Additionally, DNA barcoding can be considered a valuable alternative to the classic morphology method for identification of major thrips species.
Temperature variation affects interactions involving plants, herbivores, and parasitoids, causing a mismatch between their phenological cycles. In the context of climate change, climatic factors can undergo profound and sudden changes, such as sudden hot or cold snaps. Herein, we show that the number of episodes of short but sustained low temperatures has increased, mainly during May, over the last two decades. We subjected galls induced by the Asian chestnut gall wasp (ACGW) Dryocosmus kuriphilus to cold stress to assess whether and, if so, how it affected the pest and its parasitoids. Over the course of two years, we measured seasonal parasitism, parasitism rates, the relative abundance of each parasitoid species, and ACGW mortality. We found that the cold treatment affected both the pest and the parasitoids, resulting in a reduction in the emergence of ACGWs and differing ratios of species within the parasitoid community. The most striking example was the change in the relative frequency of three species of Eupelmus spp. and Mesopolobus tibialis, which doubled in cold-stressed galls in all chestnut fields. The effects of temperature on the development of the host and the direct effects of cold temperatures on the surface of galls (in terms of the humidity or hardness of the galls) warrant further research in this direction.
The effects of herbivorous insects on a plant population are not always well tolerated. This is especially true if the herbivorous actions are directed toward rare plant species. Salvia ceratophylloides Ard. is a rare endemism of southern Italy. Observations of the plants in situ revealed that many of them were under severe stress and did not produce seeds. Therefore, to find out which factors affect the reproductive activity as a whole, an observational study was carried out. We found bottom-up and top-down effects on plant health and reproduction associated with herbivorous action. Squamapion elongatum (Coleoptera, Curculionoidea, Apionidae), in all monitored sites, infested plants non-uniformly but was able to threaten the health condition, flowering, and seed production of sage by digging tunnels into the sage branches (bottom-up action), and then secondarily by seed feeder Systole salvia Zerova (Hymenoptera, Eurytomidae) predating sage seeds (top-down action). Mainly, chalcid parasitoid wasps such as Trichomalus spp. (Hymenoptera, Pteromalidae), as well as Eupelmus vesicularis and E. muellneri (Hymenoptera, Eupelmidae), limited the herbivorous S. elongatum population and the seed herbivore S. salviae emerged with its parasitoid Ormyrus diffinis (Hymenoptera, Ormyridae). Overall, this study showed how ecological interactions among herbivores, their host, and their natural enemies act on this sage species in all sites investigated. Among the herbivores, mainly S. elongatum affected this rare sage species, which should be taken into consideration, especially in the formulation of biological control solutions and for improving operating practice aimed at reproducing the species. This study provides the molecular characterization of the herbivorous species involved, in order to support future projects to evaluate the intra- and interspecific genetic variability of insects, their evolutionary relationships, and phylogeny studies.
This study investigated a resurgence of Liothrips oleae Costa (Thysanoptera: Phlaeothripidae), an insect pest of olive crops, in a focal Southern Italian olive-producing area (Calabria Region). The young and adult olive thrips feed on the leaves and fruits of wild and cultivated olive trees, producing distortions, necrosis, and premature dropping of fruit. In our study, organic and integrated olive groves were compared for two years in order to establish the relationship between leaf and fruit damage among olive groves managed under different phytosanitary conditions. Sampling techniques were used in order to collect and count leaves and fruits (on plants and dropped premature drupes) presenting symptoms of thrips’ feeding activity. The impact of the thrips was significant in all orchards, and the estimated damage level on drupes and leaves was higher in organic olive management in each year. A morphological description of the adult females of the species is provided, and the first molecular characterization of the Calabrian olive thrips population was performed by using three different genetic regions (cytochrome c oxidase subunit I (COI), 28S ribosomal subunit (28S), and internal transcribed spacer 2 (ITS2)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.