Compressibility effects within decaying isotropic turbulence and homogeneous turbulent shear flow have been studied using direct numerical simulation. The objective of this work is to increase our understanding of compressible turbulence and to aid the development of turbulence models for compressible flows. The numerical simulations of compressible isotropic turbulence show that compressibility effects are highly dependent on the initial conditions. The shear flow simulations, on the other hand, show that measures of compressibility evolve to become independent of their initial values and are parameterized by the root mean square Mach number. The growth rate of the turbulence in compressible homogeneous shear flow is reduced compared to that in the incompressible case. The reduced growth rate is the result of an increase in the dissipation rate and energy transfer to internal energy by the pressure–dilatation correlation. Examination of the structure of compressible homogeneous shear flow reveals the presence of eddy shocklets, which are important for the increased dissipation rate of compressible turbulence.
SUMMARYThis work investigates a high-order numerical method which is suitable for performing large-eddy simulations, particularly those containing wall-bounded regions which are considered on stretched curvilinear meshes. Spatial derivatives are represented by a sixth-order compact approximation that is used in conjunction with a tenth-order non-dispersive ÿlter. The scheme employs a time-implicit approximately factored ÿnite-di erence algorithm, and applies Newton-like subiterations to achieve second-order temporal and sixth-order spatial accuracy. Both the Smagorinsky and dynamic subgrid-scale stress models are incorporated in the computations, and are used for comparison along with simulations where no model is employed. Details of the method are summarized, and a series of classic validating computations are performed. These include the decay of compressible isotropic turbulence, turbulent channel ow, and the subsonic ow past a circular cylinder. For each of these cases, it was found that the method was robust and provided an accurate means of describing the owÿeld, based upon comparisons with previous existing numerical results and experimental data. Published in
We present 3-D Large Eddy Simulation (LES) results for a turbulent isothermal round jet at a Reynolds number of 100,000. Our recently developed LES code is part of a Computational Aeroacoustics (CAA) methodology that couples surface integral acoustics methods with LES for the far field noise estimation of turbulent jets. The LES code employs high-order accurate compact differencing together with implicit spatial filtering and state-of-the-art non-reflecting boundary conditions. A localized dynamic Smagorinsky subgrid-scale (SGS) model is used for representing the effects of the unresolved scales on the resolved scales. A computational grid consisting of 12 million points was used in the present simulation. Mean flow results obtained in our simulation are found to be in excellent agreement with the available experimental data of jets at similar flow conditions. Furthermore, the near field data provided by LES is coupled with the Ffowcs Williams-Hawkings method to compute the far field noise. Far field aeroacoustics results are also presented and comparisons are made with another computational study.
This work investigates high‐order central compact methods for simulating turbulent supersonic flows that include shock waves. Several different types of previously proposed characteristic filters, including total variation diminishing, monotone upstream‐centered scheme for conservation laws, and weighted essentially non‐oscillatory filters, are investigated in this study. Similar to the traditional shock capturing schemes, these filters can eliminate the numerical instability caused by large gradients in flow fields, but they also improve efficiency compared with classical shock‐capturing schemes. Adding the nonlinear dissipation part of a classical shock‐capturing scheme to a central scheme makes the method suitable for incorporation into any existing central‐based high‐order subsonic code. The amount of numerical dissipation to add is sensed by means of the artificial compression method switch. In order to improve the performance of the characteristic filters, we propose a hybrid approach to minimize the dissipation added by the characteristic filter. Through several numerical experiments (including a shock/density wave interaction, a shock/vortex interaction, and a shock/mixing layer interaction) we show that our hybrid approach works better than the original method, and can be used for future turbulent flow simulations that include shocks. Copyright © 2009 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.