Seasonal influenza outbreaks and recurrent influenza pandemics present major challenges to public health. By studying immunological responses to influenza in different host species, it may be possible to discover common mechanisms of susceptibility in response to various influenza strains. This could lead to novel therapeutic targets with wide clinical application. Using a mouse-adapted strain of influenza (A/HK/1/68-MA20 [H3N2]), we produced a mouse model of severe influenza that reproduces the hallmark high viral load and overexpression of cytokines associated with susceptibility to severe influenza in humans. We mapped genetic determinants of the host response using a panel of 29 closely related mouse strains (AcB/BcA panel of recombinant congenic strains) created from influenza-susceptible A/J and influenza-resistant C57BL/6J (B6) mice. Combined clinical quantitative trait loci (QTL) and lung expression QTL mapping identified candidate genes for two sex-specific QTL on chromosomes 2 and 17. The former includes the previously described Hc gene, a deficit of which is associated with the susceptibility phenotype in females. The latter includes the phospholipase gene Pla2g7 and Tnfrsf21, a member of the TNFR superfamily. Confirmation of the gene underlying the chromosome 17 QTL may reveal new strategies for influenza treatment.
Phencyclidine (PCP), an antagonist at the N-methyl-D-aspartate subtype of ionotropic glutamatergic receptors, decreases gamma-aminobutyric acid (GABA)ergic inhibition, suggesting that changes in GABAergic receptor function underlie behavioral and cognitive deficits resulting from repeated administration of PCP. To test this hypothesis, male Sprague-Dawley rats treated with PCP (4.5 mg/kg, intraperitoneal, twice a day for 7 consecutive days) or saline were tested in behavioral and cognitive tasks 7 days after injections. The PCP group showed increased amphetamine (1.5 mg/kg)-stimulated locomotor activity, and exhibited a greater number of errors in the double Y-maze memory task, when compared with controls. Subchronic PCP treatment increased [H]muscimol-binding sites and decreased affinity for [H]muscimol binding in frontal cortex, hippocampus, and striatum in comparison with controls. There were no changes in the expression of glutamic acid decarboxylase or the GABA membrane transporter protein. These data show that subchronic PCP administration induces an impaired performance of a previously learned task and an enhanced response to amphetamine in the rat. The observed changes in GABAA receptors in the rat brain are consistent with the notion that alterations in GABAergic receptor function contribute to the behavioral and cognitive impairments associated with repeated exposure to PCP.
Natural Killer (NK) cells contribute to the control of viral infection by directly killing target cells and mediating cytokine release. In C57BL/6 mice, the Ly49H activating NK cell receptor plays a key role in early resistance to mouse cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. Here we show that transgenic expression of Ly49H failed to provide protection against MCMV infection in the naturally susceptible A/J mouse strain. Characterization of Ly49H+ NK cells from Ly49h-A transgenic animals showed that they were able to mount a robust cytotoxic response and proliferate to high numbers during the course of infection. However, compared to NK cells from C57BL/6 mice, we observed an intrinsic defect in their ability to produce IFNγ when challenged by either m157-expressing target cells, exogenous cytokines or chemical stimulants. This effect was limited to NK cells as T cells from C57BL/6 and Ly49h-A mice produced comparable cytokine levels. Using a panel of recombinant congenic strains derived from A/J and C57BL/6 progenitors, we mapped the genetic basis of defective IFNγ production to a single 6.6 Mb genetic interval overlapping the Ifng gene on chromosome 10. Inspection of the genetic interval failed to reveal molecular differences between A/J and several mouse strains showing normal IFNγ production. The chromosome 10 locus is independent of MAPK signalling or decreased mRNA stability and linked to MCMV susceptibility. This study highlights the existence of a previously uncovered NK cell-specific cis-regulatory mechanism of Ifnγ transcript expression potentially relevant to NK cell function in health and disease.
AMPA receptor antagonists disrupt avoidance responding, but their day-to-day effect on this behavior has not been elucidated. This study compared the multisession effect of the AMPA/kainate receptor antagonist CNQX with that of the typical antipsychotic haloperidol on the expression of avoidance responding. Rats (N = 199) were trained to move to safety on presentation of a tone in one-way active conditioned avoidance and were tested across 5 sessions. Intracerebroventricular (icv) injection of CNQX (20-min injection-test interval) produced a dose-dependent, immediate block of avoidance responding, compared with the extinction-like decline of avoidance responding produced by haloperidol (intraperitoneal [ip], 60-min injection-test interval; icv, 60 but not 20-min injection-test interval). Previous exposure to CNQX significantly reduced its efficacy, illustrating that its effects may not be specific to the conditioned safety-related stimuli that control responding in conditioned avoidance, as proposed for antidopaminergic compounds. The new multisession profile of disrupted avoidance responding illustrated by CNQX suggests different roles for glutamatergic and dopaminergic neurotransmission in conditioned avoidance responding. Results are consistent with a role for AMPA receptors in maintaining the expression of learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.