A comparative study on interfacial crystallization of isotactic polypropylene (iPP) surrounding macroscopic carbon nanotube and graphene fibers has been carried out in single fiber polymer composites by means of in situ polarized optical microscope, scanning electron microscope and X-ray diffraction. Ordered interfacial microstructures of iPP nucleate on both nanocarbon fibers in the form of a transcrystalline interphase. Nanotube fibers tend to promote negative birefringence transcrystals whereas graphene fibers induce positive birefringence transcrystals. The microstructures of transcrystals are strongly dependent on the thermal history and the double-layered transcrystals consisting of a negative inner layer and a positive outer layer occur under certain conditions. Transcrystallization kinetics has been studied and the Lauritzen-Hoffman theory of heterogeneous nucleation used to analyze the dynamic crystallization process. While the fold surface energy of iPP transcrystals surrounding both nanocarbon fibers shows little difference, the nanotube fiber promotes shorter induction time than the graphene fiber. Thermal resistance test demonstrates that the ordered interfacial microstructures possess higher melting temperature in the nanotube fiber composites than those in the graphene fiber composites. Under appropriate conditions, the-form transcrystals of iPP are observed. The amount of the-form iPP surrounding the nanotube fiber is much higher than that surrounding the graphene fiber. A theoretical model is proposed to interpret the difference between the nanotube and graphene fiber composites and the mechanisms behind its influence on interfacial crystallization.
Interfacial interactions between the polymer and graphene are pivotal in determining the reinforcement efficiency in the graphene-enhanced polymer nanocomposites. Here, we report on the dynamic process of graphene-induced oriented interfacial crystals of isotactic polypropylene (iPP) in the single fiber polymer composites by means of polarized optical microscopy (POM) and scanning electron microscopy (SEM). The graphene fibers are obtained by chemical reduction of graphene oxide fibers, and the latter is produced from the liquid crystalline dispersion of graphene oxide via a wet coagulation route. The lamellar crystals of iPP grow perpendicular to the fiber axis, forming an oriented transcrystalline (TC) interphase surrounding the graphene fiber. Various factors including the diameter of graphene fibers, crystallization temperature, and time are investigated. The dynamic process of polymer transcrystallization surrounding the graphene fiber is studied in the temperature range 124-132 °C. The Lauritzen-Hoffman theory of heterogeneous nucleation is applied to analyze the transcrystallization process, and the fold surface free energy is determined. Study into microstructures demonstrates a cross-hatched lamellar morphology of the TC interphase and the strong interfacial adhesion between the iPP and graphene. Under appropriate conditions, the β-form transcrystals occur whereas the α-form transcrystals are predominant surrounding the graphene fibers.
Multiscale assembly of poly(3-alkylthiophene)s complexed with various alkyl-chain surfactant architectures has been investigated in dilute and concentrated solutions by means of ultraviolet–visible absorption and fluorescence spectroscopy, polarized optical microscopy, small-angle X-ray scattering, and four-point probe conductivity measurements. Supramolecular complexation occurs via ionic interactions between poly(3-alkylthiophene)s electrolytes and ionic surfactants. In dilute solutions, the supramolecular complex undergoes a coil-to-rod conformational transition as evidenced by a time-dependent chromism. Spectroscopic studies on transition kinetics reveal an inverse first-order rate law. While surfactant architectures significantly affect the persistence length of the complexes, the inverse first-order rate law is maintained. When concentrated above a critical value, the supramolecular complex exhibits an isotropic-to-liquid crystalline transition yielding hexagonally ordered microstructures. The liquid crystalline phase boundaries are largely dependent on polymer and surfactant architectures. The correlations between the intrinsic rigidity of conjugated polymers, optoelectronic properties, and liquid crystalline formation are presented. The dried films made from the sheared liquid crystalline solutions inherit liquid crystalline monodomains and display four times faster charge transport along the backbone alignment direction than the perpendicular direction.
We report on a series of experiments on large-area ordered patterns of graphene oxide on solid substrates deposited from aqueous dispersions by directed drop evaporation. The aqueous dispersion of graphene oxide exhibits phase transitions from isotropic to liquid crystalline nematic phases via a biphasic region with increasing concentration. In the single nematic phase, schlieren textures accompanied by oriented bands are frequent. Drying of drops in each phase results in deposition covering the whole drop base. The dynamic process of drop drying is analyzed based on the weight loss, radius change, and texture change over time. It is found that the radial bands develop in the nematic drops in the vicinity of the receding of the contact line and subsequently transform into birefringent stripes after drying. Study into the structure and morphology of the stripes reveals anisotropic wrinkling of graphene oxide sheets. The nature of stripe orientation is strongly dependent on the local nematic order at the dewetting water front. Various macroscopic patterns with different stripe orientations including radial spokes, spider webs, and parallel stripes have been generated by tuning the nematic order of drops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.