H(3) receptor antagonists based on a 2-aminoethylbenzofuran skeleton have been discovered, which are potent in vitro at human and rat H(3) receptors, with K(i) values of 0.1-5.8 nM. Analogues were discovered with potent (0.01-1 mg/kg) cognition and attention enhancing properties in animal models. One compound in particular, 4-(2-[2-(2(R)-methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl)benzonitrile (ABT-239), combined potent and selective H(3) receptor antagonism and excellent pharmacokinetic and metabolic properties across species, with full efficacy in two behavioral models: a five-trial inhibitory avoidance acquisition model in rat pups at 0.1 mg/kg and a social recognition memory model in adult rats at 0.01 mg/kg. Furthermore, this compound did not stimulate locomotor activity and showed high selectivity for the induction of behavioral efficacy versus central nervous system based side effects. The potency and selectivity of this compound and of analogues from this class support the potential of H(3) receptor antagonists for the treatment of cognitive dysfunction.
The alpha7 subtype of the nicotinic acetylcholine receptor (nAChR) is a target of considerable interest in CNS drug discovery, in part due to its implication in diseases of unmet medical need such as schizophrenia and Alzheimer's disease. Pharmacological distinction of this subtype from other nAChRs is exemplified by antagonists such as alpha-bungarotoxin and methyllycaconitine, and more recently by agonists that have emerged from various structural classes. Increasing evidence, both preclinical and clinical, has also demonstrated that alpha7 nAChR agonists and partial agonists can lead to improvements in cognitive performance. An attractive alternative approach to modulating alpha7 nAChR function is to enhance the effects of the endogenous neurotransmitter acetylcholine (ACh) through positive allosteric modulation (PAM). This class of compounds - positive allosteric modulators (PAMs) - could selectively modulate the activity of ACh at alpha7 nAChRs in a manner that may have significant advantages over indiscriminate and direct activation of nAChRs by nicotine/nicotinic agonists or by acetylcholinesterase inhibitors. Validation of the alpha7 nAChR-selective PAM approach requires the identification of potent and selective compounds. Initially identified nAChR allosteric modulators, including 5-hydroxyindole (5-HI), galantamine, bovine serum albumin, and SLURP-1, are weak and nonselective. More recently, potent and alpha7 nAChR-selective PAMs belonging to diverse chemotypes have emerged and are beginning to be optimized as tools for concept validation in preclinical models and in the clinic. This review summarizes the current status of nAChR-selective PAMs, from patents and published literature, and their potential for the treatment of cognitive deficits associated with neuropsychiatric and neurodegenerative disorders and other diseases.
The discovery of a series of pyrrole-sulfonamides as positive allosteric modulators (PAM) of alpha7 nAChRs is described. Optimization of this series led to the identification of 19 (A-867744), a novel type II PAM with good potency and selectivity. Compound 19 showed acceptable pharmacokinetic profile across species and brain levels sufficient to modulate alpha7 nAChRs. In a rodent model of sensory gating, 19 normalized gating deficits. These results suggest that 19 represents a novel class of molecules capable of allosteric modulation of the alpha7 nAChRs.
A new series of H3 receptor antagonists was discovered with nanomolar and subnanomolar affinities at human and rat H3 receptors. Starting from an earlier, more structurally limited series of benzofurans, the present series of compounds demonstrated increased structural variety and flexibility with greater in vitro potency. One compound in particular, [2-[2-(2-(R)-methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl](5-nitropyridin-2-yl)amine (7h), gave the best binding potency (human K(i) of 0.05 nM, rat K(i) of 0.11 nM), which represented a 9-fold (in human) and an 11-fold (in rat) improvement over ABT-239 (compound 5), a compound previously reported to have excellent in vitro potency and in vivo efficacy. The synthesis, SAR of the H3 binding affinities, in vitro assay for phospholipidosis, and pharmacokinetic properties of the new compounds are described.
Transient receptor potential vanilloid 3 (TRPV3) is a Ca(2+)- and Na(+)-permeable channel with a unique expression pattern. TRPV3 is found in both neuronal and non-neuronal tissues, including dorsal root ganglia, spinal cord, and keratinocytes. Recent studies suggest that TRPV3 may play a role in inflammation, pain sensation, and skin disorders. TRPV3 studies have been challenging, in part due to a lack of research tools such as selective antagonists. Herein, we provide the first detailed report on the development of potent and selective TRPV3 antagonists featuring a pyridinyl methanol moiety. Systematic optimization of pharmacological, physicochemical, and ADME properties of original lead 5a resulted in identification of a novel and selective TRPV3 antagonist 74a, which demonstrated a favorable preclinical profile in two different models of neuropathic pain as well as in a reserpine model of central pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.