With the eventual phase-out of chlorofluorocarbons, and restrictive regulations concerning the use of cleaning solvents such as hydrochlorofluorocarbons, and other volatile organic compounds, it is essential to seek new, environmentally acceptable cleaning processes. In the DOE Complex and in industry, an environmentally sound process for precision cleaning of machined metal parts is one of the issues that needs to be addressed. At Sandia, we are investigating the use of supercritical carbon dioxide (CO2) as an alternative cleaning solvent for this application. Carbon dioxide is nontoxic, recyclable, and relatively inexpensive. Supercritical CO2 has been demonstrated as a solvent for many nonpolar organic Compounds, including hydrocarbon-based machining and lubricating oils. The focus of this work is to investigate any corrosive effects of supercritical CO2 cleaning on metals. Sample coupons of several common metals were statically exposed to pure supercritical CO2, water saturated supercritical CO2, and 10 wt% methanol/CO2 cosolvent at 24,138 kPa (3500 psi) and 323°K (50°C) for 24 hours. Gravimetric analysis and magnified visual inspection of the coupons were performed before and after the exposure tests. Electron microprobe, x-ray photoelectron spectroscopy (XPS), and Auger electron surface analyses were done as needed where visual and gravimetric changes in the samples were evident. The results of these experiments will be reported. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Mechanical serial sectioning is a highly repetitive technique employed in metallography for the rendering of 3D reconstructions of microstructure. While alternate techniques such as ultrasonic detection, micro-computed tomography, and focused ion beam milling have progressed much in recent years, few alternatives provide equivalent opportunities for comparatively high resolutions over significantly sized cross-sectional areas and volumes. To that end, the introduction of automated serial sectioning systems has greatly heightened repeatability and increased data collection rates while diminishing opportunity for mishandling and other userintroduced errors. Unfortunately, even among current, stateof-the-art automated serial sectioning systems, challenges in data collection have not been fully eradicated. Therefore, this paper highlights two specific advances to assist in this area; a non-contact laser triangulation method for assessment of material removal rates and a newly developed graphical user interface providing real-time monitoring of experimental progress. Both are shown to be helpful in the rapid identification of anomalies and interruptions, while also providing comparable and less error-prone measures of removal rate over the course of these long-term, challenging, and innately destructive characterization experiments.
Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.