Alkali metal silicides are a new class of materials that can provide thermal, chemical and immiscible gas drive benefits in one treatment. Not previously known in oilfield applications, these materials are solid, energy-dense chemicals that generate heat, hydrogen and an alkali silicate upon reaction with reservoir water. The reaction is only limited by availability of any type of water; in a closed environment, pressures >10,000 psi can be generated. Alkali metal silicides are dispersible in various hydrocarbon fluids to facilitate placement in a reservoir and can be coated to allow time delayed reaction. The powders can also be milled to submicron size for optimum injectivity in high permeability reservoirs. This combination of material and reaction-product properties makes silicides particularly applicable for the recovery of heavier crude oils. Since the chemical reaction occurs in-situ, silicides are not subject to the thermal efficiency limitations of conventional thermal EOR processes at depth. Further, the resulting hydrogen and silicate reaction products represent a "green" chemistry approach that may reduce the environmental impact of oil recovery operations. This paper presents bench scale core flood results demonstrating that alkali metal silicides can recover greater than 50% of residual oil. Results also show that alkali metal silicides can provide accelerated oil production, as much as 20% faster than comparable chemical technologies.
Alkali metal silicides have ability to enhance oil recovery in a variety of light, medium and heavy oil reservoirs. These chemicals, which include the silicides of sodium (Na), potassium (K) and lithium (Li), are free-flowing granules or very fine powders that are applied downhole in hydrocarbon dispersions. When introduced into a formation through an appropriate non-aqueous carrier fluid, these materials rapidly react with the water in the reservoir pore space, releasing hydrogen gas and heat, and converting into alkali silicates. The silicide-water reaction combined with the flooding process provides multiple mechanisms in the reservoir to enhance oil recovery. Enhanced oil recovery mechanisms include: energy addition through the generation of hydrogen; oil viscosity reductions due to hydrogen solubilization, temperature increase and solvent dilution from the carrier fluid; interfacial tension reduction due to in-situ surfactant generation from interaction of the crude oil organic acids in the reservoir oil with the alkalinity from the produced silicates; and potential improvement of water wettability in carbonate reservoirs. This one chemical combines the effects of thermal, drive energy and chemical mechanisms. In this work, a field-scale numerical simulation study was conducted to investigate the feasibility of cyclically injecting an alkali metal silicide into the wormhole structures of a post CHOPS (cold heavy oil production with sand) reservoir. The Computer Modeling Group's (CMG) STARS simulator was used to perform the simulations; the model consists of six vertical wells with wormhole structures developed using proprietary wormhole growth models that are based on actual field production histories from a representative CHOPS field in Canada (the Lloydminster, Alberta and Saskatchewan region). Multiple simulation cases were run to investigate the effects of injected cycle volume, cycle time, injection rate and silicide concentration. A sensitivity analysis was performed on parameters affecting the slurry model and dispersion rates of the silicide in the reservoir. The preliminary economics of the process were calculated and used to identify an optimized and cost-effective injection strategy, which can subsequently be used as a basis to design a field trial application. The study results showed that the cyclic injection of sodium silicide in a post CHOPS reservoir can in fact improve the recovery of oil in place. The study shows that the predominant recovery mechanism is likely the pressure maintenance of the reservoir that provides energy for continued oil production. This, coupled with secondary oil viscosity reductions, enable the cyclic injection of silicide to increase production for an additional 5 to 10 years, thereby adding 25 to 50% to recoverable reserves under favorable economics. This paper discusses the impacts of the in situ generation of heat, hydrogen and alkali silicate for post CHOPS augmentation and summarizes the key findings of the simulation study and economic modeling.
Summary Alkali-metal silicides are a new class of materials that provide thermal, chemical, and immiscible gas-drive benefits in one treatment. Not previously known in oilfield applications, these materials are energy-dense chemicals that generate heat, hydrogen, and an alkali silicate after reaction with reservoir water. The reaction is only limited by the availability of water in any form; in a closed environment, one can generate pressures >10,000 psi (>68.9 MPa). One can disperse alkali-metal silicides in various hydrocarbon fluids to facilitate placement deep in the reservoir, or one can coat them to allow a time-delayed reaction. One can mill the powders to submicron size for optimum injectivity in high-permeability reservoirs or zones. This combination of reaction-product properties makes silicides particularly applicable for the recovery of heavier crude oils. Because the chemical reaction occurs in situ, silicides are not subject to the thermal-inefficiency limitations of conventional thermal-enhanced-oil-recovery processes at depth. Further, the resulting hydrogen and silicate reaction products represent a “green” chemistry approach that may reduce the environmental impact of oil-recovery operations. This paper discusses the potential impacts of heat, hydrogen, and alkali generated from alkali-metal silicide and presents bench-scale high-permeability unconsolidated-sandpack linear-flood results demonstrating recovery efficiencies up to 93% of original oil in place (residual oil saturation = 0.058). Results also show that alkali-metal silicides can provide accelerated oil production, as much as 20% faster than comparable chemical technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.