BackgroundThe amyloid hypothesis in Alzheimer disease (AD) considers amyloid β peptide (Aβ) deposition causative in triggering down-stream events like neurofibrillary tangles, cell loss, vascular damage and memory decline. In the past years N-truncated Aβ peptides especially N-truncated pyroglutamate AβpE3-42 have been extensively studied. Together with full-length Aβ1–42 and Aβ1–40, N-truncated AβpE3-42 and Aβ4–42 are major variants in AD brain. Although Aβ4–42 has been known for a much longer time, there is a lack of studies addressing the question whether AβpE3-42 or Aβ4–42 may precede the other in Alzheimer’s disease pathology.ResultsUsing different Aβ antibodies specific for the different N-termini of N-truncated Aβ, we discovered that Aβ4-x preceded AβpE3-x intraneuronal accumulation in a transgenic mouse model for AD prior to plaque formation. The novel Aβ4-x immunoreactive antibody NT4X-167 detected high molecular weight aggregates derived from N-truncated Aβ species. While NT4X-167 significantly rescued Aβ4–42 toxicity in vitro no beneficial effect was observed against Aβ1–42 or AβpE3-42 toxicity. Phenylalanine at position four of Aβ was imperative for antibody binding, because its replacement with alanine or proline completely prevented binding. Although amyloid plaques were observed using NT4X-167 in 5XFAD transgenic mice, it barely reacted with plaques in the brain of sporadic AD patients and familial cases with the Arctic, Swedish and the presenilin-1 PS1Δ9 mutation. A consistent staining was observed in blood vessels in all AD cases with cerebral amyloid angiopathy. There was no cross-reactivity with other aggregates typical for other common neurodegenerative diseases showing that NT4X-167 staining is specific for AD.ConclusionsAβ4-x precedes AβpE3-x in the well accepted 5XFAD AD mouse model underlining the significance of N-truncated species in AD pathology. NT4X-167 therefore is the first antibody reacting with Aβ4-x and represents a novel tool in Alzheimer research.
Full-length Aβ1-42 and Aβ1-40, N-truncated pyroglutamate Aβ3-42 and Aβ4-42 are major variants in the Alzheimer brain. Aβ4-42 has not been considered as a therapeutic target yet. We demonstrate that the antibody NT4X and its Fab fragment reacting with both the free N-terminus of Aβ4-x and pyroglutamate Aβ3-X mitigated neuron loss in Tg4-42 mice expressing Aβ4-42 and completely rescued spatial reference memory deficits after passive immunization. NT4X and its Fab fragment also rescued working memory deficits in wild type mice induced by intraventricular injection of Aβ4-42. NT4X reduced pyroglutamate Aβ3-x, Aβx-40 and Thioflavin-S positive plaque load after passive immunization of 5XFAD mice. Aβ1-x and Aβx-42 plaque deposits were unchanged. Importantly, for the first time, we demonstrate that passive immunization using the antibody NT4X is therapeutically beneficial in Alzheimer mouse models showing that N-truncated Aβ starting with position four in addition to pyroglutamate Aβ3-x is a relevant target to fight Alzheimer’s disease.
Alzheimer's disease (AD) is neuropathologically characterized by aggregates of amyloid-β peptides (Aβ) and tau proteins. The consensus in the AD field is that Aβ and tau should serve as diagnostic biomarkers for AD. However, their aggregates have been difficult to investigate by conventional fluorescence microscopy, since their size is below the diffraction limit (∼200 nm). To solve this, we turned to a super-resolution imaging technique, stimulated emission depletion (STED) microscopy, which has a high enough precision to allow the discrimination of low- and high-molecular weight aggregates prepared in vitro. We used STED to analyze the structural organization of Aβ and tau in cerebrospinal fluid (CSF) from 36 AD patients, 11 patients with mild cognitive impairment (MCI), and 21 controls. We measured the numbers of aggregates in the CSF samples, and the aggregate sizes and intensities. These parameters enabled us to distinguish AD patients from controls with a specificity of ∼87% and a sensitivity of ∼79% . In addition, the aggregate parameters determined with STED microscopy correlated with the severity of cognitive impairment in AD patients. Finally, these parameters may be useful as predictive tools for MCI cases. The STED parameters of two MCI patients who developed AD during the course of the study, as well as of MCI patients whose Aβ ELISA values fall within the accepted range for AD, placed them close to the AD averages. We suggest that super-resolution imaging is a promising tool for AD diagnostics.
SLC35B4, solute receptor for UDP-N-acetylglucosamine and UDP-xylose, is associated with diabetes and predisposing conditions. This study investigated the localization of SLC35B4 and compared the differential expression between a knockdown of SLC35B4 and controls in HepG2. Responsiveness to glucose, expression, and localization were assayed using Western blot and immunostaining. Localization was confirmed using a proximity ligation assay. Two-dimensional (2D) gel electrophoresis and MALDI-TOF were used to identify differentially expressed proteins and pathway analysis was performed. SLC35B4 was increased by 60% upon glucose stimulation and localized in Golgi apparatus and endoplasmic reticulum. Presence of SLC35B4 in the Golgi apparatus suggests its involvement in the biosynthesis of glycoconjugate proteins. Four proteins were markedly under-expressed (Hsp60, HspA8, TUBA1A, and ENO1) and linked to the pathogenesis of diabetes or post-translationally modified by O-GlcNAc. Glucose levels activate SLC35B4 expression. This triggers a downstream effect via Hsp60 and other proteins. We hypothesize that the downstream effect on the proteins is mediated via altering the glycosylation pattern inside liver cells. The downstream cascade ultimately alters the ability of cultured liver cells to inhibit endogenous glucose production, and this could play a role in the association of the above-listed genes with the pathogenesis of diabetes.
Introduction: Ensuring scientific reproducibility and compliance with documentation guidelines of funding bodies and journals is a topic of greatly increasing importance in biomedical research. Failure to comply, or unawareness of documentation standards can have adverse effects on the translation of research into patient treatments, as well as economic implications. In the context of the German Research Foundation-funded collaborative research center (CRC) 1002, an IT-infrastructure sub-project was designed. Its goal has been to establish standardized metadata documentation and information exchange benefitting the participating research groups with minimal additional documentation efforts. Methods: Implementation of the self-developed menoci-based research data platform (RDP) was driven by close communication and collaboration with researchers as early adopters and experts. Requirements analysis and concept development involved in person observation of experimental procedures, interviews and collaboration with researchers and experts, as well as the investigation of available and applicable metadata standards and tools. The Drupal-based RDP features distinct modules for the different documented data and workflow types, and both the development and the types of collected metadata were continuously reviewed and evaluated with the early adopters. Results: The menoci-based RDP allows for standardized documentation, sharing and cross-referencing of different data types, workflows, and scientific publications. Different modules have been implemented for specific data types and workflows, allowing for the enrichment of entries with specific metadata and linking to further relevant entries in different modules. Discussion: Taking the workflows and datasets of the frequently involved experimental service projects as a starting point for (meta-)data types to overcome irreproducibility of research data, results in increased benefits for researchers with minimized efforts. While the menoci-based RDP with its data models and metadata schema was originally developed in a cardiological context, it has been implemented and extended to other consortia at GÃűttingen Campus and beyond in different life science research areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.