The evolutionarily conserved JNK/AP-1 (Jun N-terminal kinase/activator protein 1) and BMP (Bone Morphogenetic Protein) signaling cascades are deployed hierarchically to regulate dorsal closure in the fruit fly Drosophila melanogaster. In this developmental context, the JNK/AP-1 signaling cascade transcriptionally activates BMP signaling in leading edge epidermal cells. Here we show that the mummy (mmy) gene product, which is required for dorsal closure, functions as a BMP signaling antagonist. Genetic and biochemical tests of Mmy’s role as a BMP-antagonist indicate that its function is independent of AP-1, the transcriptional trigger of BMP signal transduction in leading edge cells. pMAD (phosphorylated Mothers Against Dpp) activity data show the mmy gene product to be a new type of epidermal BMP regulator – one which transforms a BMP ligand from a long- to a short-range signal. mmy codes for the single UDP-N-acetylglucosamine pyrophosphorylase in Drosophila, and its requirement for attenuating epidermal BMP signaling during dorsal closure points to a new role for glycosylation in defining a highly restricted BMP activity field in the fly. These findings add a new dimension to our understanding of mechanisms modulating the BMP signaling gradient.
Background Plasmodium ookinete surface proteins as post-fertilization target antigens are potential malaria transmission-blocking vaccine (TBV) candidates. Putative secreted ookinete protein 25 (PSOP25) is a highly conserved ookinete surface protein, and has been shown to be a promising novel TBV target. Here, we further investigated the TBV activities of the full-length recombinant PSOP25 (rPSOP25) protein in Plasmodium berghei, and characterized the potential functions of PSOP25 during the P. berghei life-cycle.MethodsWe expressed the full-length P. berghei PSOP25 protein in a prokaryotic expression system, and developed polyclonal mouse antisera and a monoclonal antibody (mAb) against the recombinant protein. Indirect immunofluorescence assay (IFA) and Western blot were used to test the specificity of antibodies. The transmission-blocking (TB) activities of antibodies were evaluated by the in vitro ookinete conversion assay and by direct mosquito feeding assay (DFA). Finally, the function of PSOP25 during Plasmodium development was studied by deleting the psop25 gene.ResultsBoth polyclonal mouse antisera and anti-rPSOP25 mAb recognized the PSOP25 proteins in the parasites, and IFA showed the preferential expression of PSOP25 on the surface of zygotes, retorts and mature ookinetes. In vitro, these antibodies significantly inhibited ookinetes formation in an antibody concentration-dependent manner. In DFA, mice immunized with the rPSOP25 and those receiving passive transfer of the anti-rPSOP25 mAb reduced the prevalence of mosquito infection by 31.2 and 26.1%, and oocyst density by 66.3 and 63.3%, respectively. Genetic knockout of the psop25 gene did not have a detectable impact on the asexual growth of P. berghei, but significantly affected the maturation of ookinetes and the formation of midgut oocysts.ConclusionsThe full-length rPSOP25 could elicit strong antibody response in mice. Polyclonal and monoclonal antibodies against PSOP25 could effectively block the formation of ookinetes in vitro and transmission of the parasites to mosquitoes. Genetic manipulation study indicated that PSOP25 is required for ookinete maturation in P. berghei. These results support further testing of the PSOP25 orthologs in human malaria parasites as promising TBV candidates.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1932-4) contains supplementary material, which is available to authorized users.
Highlights d Loss of super sex combs increases embryonic Dpp/BMP signaling in Drosophila d The BMP type I receptor Saxophone can transduce a Dpp/ BMP signal d The embryonic function of saxophone is repressed by the super sex combs gene product d Super sex combs (the Drosophila OGT) glycosylates Saxophone
P P Mad P Tkv Put Dpp P P Mad P Mad P Tkv Put Dpp Put Dpp P P Sax Put Dpp P Sax O Sxc Normal glucose and Sxc Low glucose or no Sxc Extracellular space Cytoplasm Graphical Abstract Moulton et al. p. 2 Summary Precise regulation of signal transduction is critical throughout organismal life, both for embryonic development and for adult homeostasis. To ensure proper spatio-temporal signal transduction, Bone Morphogenetic Protein (BMP) signaling pathways, like all other signaling pathways, are regulated by both agonists and antagonists. Here, we report identification of a previously unrecognized method of signal antagonism for Dpp (Decapentaplegic), a Drosophila BMP family member. We demonstrate that the BMP type I receptor Saxophone (Sax) functions as a Dpp receptor in the Drosophila embryonic epidermis, but that its activity is normally inhibited by the Olinked glycosyltransferase Super sex combs (Sxc). In wild-type embryos, inhibition of Saxophone (Sax) activity in the epidermis marks the BMP type I receptor Thickveins (Tkv) as the sole conduit for Dpp. In contrast, in sxc mutants, the Dpp signal is transduced by both Tkv and Sax, and elevated Dpp signaling induces errors in embryonic development that lead to embryonic death.We also demonstrate that Sax is the O-glycosylated target of Sxc and that O-glycosylation of Sax can be modulated by dietary sugar. Together, these findings link fertility to nutritive environment and point to Sax (activin receptor-like kinase [Alk] 1/2) signaling as the nutrient-sensitive branch of BMP signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.