In this work, we addressed the local degradation mechanisms limiting the prelaunch environmental durability of thin-layered silver stacks for demanding space mirror applications. Local initiation and propagation of tarnishing were studied by combined surface and interface analysis on model stack samples consisting of thin silver layers supported on lightweight SiC substrates and protected by thin SiO overcoats, deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous HS. The results show that tarnishing is locally initiated by the formation of AgS columns erupting above the stack surface. AgS growth is promoted at high aspect ratio defects (surface pores) of the SiC substrate as a result of an imperfect protection by the SiO overcoat. Channels most likely connect the silver layer to its environment through the protection layer, which enables local HS entry and AgS growth. The silver sulfide columns grow in number and size eventually leading to coalescence with increasing HS exposure. In more advanced stages, tarnishing slows down owing to saturation of all pre-existing imperfectly protected sites of preferential sulfidation. However, it progresses radially at the basis of the AgS columns underneath the protection layer, consuming the metallic silver layer and deteriorating the protecting overcoat.
At zero temperature, a Galilean-invariant Bose fluid is expected to be fully superfluid. Here we investigate theoretically and experimentally the quenching of the superfluid density of a dilute Bose-Einstein condensate due to the breaking of translational (and thus Galilean) invariance by an external 1D periodic potential. Both Leggett's bound fixed by the knowledge of the total density and the anisotropy of the sound velocity provide a consistent determination of the superfluid fraction. The use of a large-period lattice emphasizes the important role of two-body interactions on superfluidity.
We demonstrate the arbitrary control of the density profile of a two-dimensional Bose gas by shaping the optical potential applied to the atoms. We use a digital micromirror device (DMD) directly imaged onto the atomic cloud through a high resolution imaging system. Our approach relies on averaging the response of many pixels of the DMD over the diffraction spot of the imaging system, which allows us to create an optical potential with an arbitrary intensity profile and with micron-scale resolution. The obtained density distribution is optimized with a feedback loop based on the measured absorption images of the cloud. Using the same device, we also engineer arbitrary spin distributions thanks to a two-photon Raman transfer between internal ground states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.