Freshwater ecosystems are susceptible to biodiversity losses due to land conversion. This is particularly true for the conversion of land from forests for agriculture and urban development. Freshwater sediments harbor microorganisms that provide vital ecosystem services. In dynamic habitats like freshwater sediments, microbial communities can be shaped by many processes, although the relative contributions of environmental factors to microbial community dynamics remain unclear. Given the future projected increase in land use change, it is important to ascertain how associated changes in stream physico-chemistry will influence sediment microbiomes. Here, we characterized stream chemistry and sediment bacterial community composition along a mixed land-use gradient in West Virginia, USA across one growing season. Sediment bacterial community richness was unaffected by increasing anthropogenic land use, though microbial communities were compositionally distinct across sites. Community threshold analysis revealed greater community resilience to agricultural land use than urban land use. Further, predicted metagenomes suggest differences in potential microbial function across changes in land use. The results of this study suggest that low levels of urban land use change can alter sediment bacterial community composition and predicted functional capacity in a mixed-use watershed, which could impact stream ecosystem services in the face of global land use change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.