Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design.
G.B.), m.ghajari@imperial.ac.uk (M.G.), r.hewson@imperial.ac.uk (R.H.), A.Alazmani@leeds.ac.uk (A.A.), P.R.Culmer@leeds.ac.uk (P.C.). AbstractTactile sensors are essential for robotic systems to interact safely and effectively with the external world, they also play a vital role in some smart healthcare systems. Despite advances in areas including materials/composites, electronics and fabrication techniques, it remains challenging to develop low cost, high performance, durable, robust, soft tactile sensors for realworld applications. This paper presents the first Soft Inductive Tactile Sensor (SITS) which exploits an inductance-transducer mechanism based on the eddy-current effect. SITSs measure the inductance variation caused by changes in AC magnetic field coupling between coils and conductive films. Design methodologies for SITSs are discussed by drawing on the underlying physics and computational models, which are used to develop a range of SITS prototypes. An exemplar prototype achieves a state-of-the-art resolution of 0.82 mN with a measurement range over 15 N. Further tests demonstrate that SITSs have low hysteresis, good repeatability, wide bandwidth, and an ability to operate in harsh environments. Moreover, they can be readily fabricated in a durable form and their design is inherently extensible as highlighted by a 4x4 SITS array prototype. These outcomes show the potential of SITS systems to further advance tactile sensing solutions for integration into demanding real-world applications.
Polymer-induced drag reduction (DR) in fluids was studied using a rotational rheometer with double-gap concentric cylinder geometry. Although both polymers (polyacrylamide (PAM) and 2-acrylamido-2methylpropane sulfonic acid (SPAM)) had molecular weights of several MDa, the contrasting polymer charge, nonionic and anionic, led to different polymer overlap concentrations (c*), PAM ≫ SPAM, and fluid rheology, with PAM fluids mostly Newtonian and SPAM fluids non-Newtonian (shearthinning). Based on these differences, it was important to account for the infinite shear viscosity and normalize the polymer concentration by the intrinsic concentration (c int ) so that the DR performance of the two polymer fluids could be accurately compared. Both polymers induced DR, and the maximum DR by SPAM (DR% = 28) was slightly higher than that by PAM (DR% = 22) when Re p ∼ 1700. For PAM, the loss of DR with time diminished at higher polymer concentrations (≥100 ppm, at Re p = 3149) but was found to be sensitive to high Re p , with polymer chain scission the likely cause of the reduced performance. For the semi-dilute SPAM fluids, the shear stability contrasted that of PAM, showing negligible dependence on the polymer concentration and Re p . The apparent rapid loss of DR was predominantly attributed to a time-dependent effect and not polymer degradation. In pipe flow, the maximum DR for SPAM was higher than that measured by rheometry and was attributed to differences in the flow conditions. However, changes in the normalized DR/c with polymer concentration were found to be consistent between the two flow geometries. Furthermore, the high fluid stresses in pipe flow (at high Re p ) led to drag reduction losses consistent with PAM, as the time-dependent effect was not seen.
Derived from the Heterogeneous Multiscale Methods (HMM), a two-scale method is developed for the analysis of Elastohydrodynamic Lubrication (EHL) and micro-EHL in tilted-pad bearings with threedimensional topography. A relationship linking the pressure gradient to mass flow rate is derived and represented in the bearing domain through homogenisation of near-periodic simulations describing the Fluid Structure Interaction (FSI) of topographical features. For the parameters investigated the influence of compressibility and piezoviscosity was found to be more significant than that of non-Newtonian (shear-thinning) behaviour on textured bearing performance. As the size of topography increased twoscale solutions demonstrated that at constant load the coefficient of friction increased and the minimum film thickness decreased over a range of pad lengths and tilt angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.