Disrupted operations of the reward circuit underlie major emotional disorders, including depression, which commonly arise following early life stress / adversity (ELA). However, how ELA enduringly impacts reward circuit functions remains unclear. We characterize a stress-sensitive projection connecting basolateral amygdala (BLA) and nucleus accumbens (NAc) that co-expresses GABA and the stress-reactive neuropeptide corticotropin-releasing hormone (CRH). We identify a crucial role for this projection in executing disrupted reward behaviors provoked by ELA: chemogenetic and optogenetic stimulation of the projection in control male mice suppresses several reward behaviors, recapitulating deficits resulting from ELA and demonstrating the pathway’s contributions to normal reward behaviors. In adult ELA mice, inhibiting–but not stimulating–the projection, restores typical reward behaviors yet has little effect in controls, indicating ELA-induced maladaptive plasticity of this reward-circuit component. Thus, we discover a stress-sensitive, reward inhibiting BLA → NAc projection with unique molecular features, which may provide intervention targets for disabling mental illnesses.
Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which glutamate or GABA are released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. Here we tested the hypothesis that the trans-synaptic cell adhesion molecules neurexins (Nrxns) regulate DA neuron neurotransmission. Conditional deletion of all Nrxns in DA neurons (DAT::Nrxns KO) revealed that loss of Nrxns does not impair the basic development and ultrastructural characteristics of DA neuron terminals. However, loss of Nrxns caused an impairment of DA transmission revealed as a reduced rate of DA reuptake following activity-dependent DA release, decreased DA transporter levels, increased vesicular monoamine transporter expression and impaired amphetamine-induced locomotor activity. Strikingly, electrophysiological recording revealed an increase of GABA co-release from DA neuron axons in the striatum of the KO mice. These findings reveal that Nrxns act as key regulators of DA neuron connectivity and DA-mediated functions.
Neurexins (Nrxns) have been extensively studied for their role in synapse organization and have been linked to many neuropsychiatric disorders, including autism spectrum disorder (ASD), and epilepsy. However, no studies have provided direct evidence that Nrxns may be the key regulator in the shared pathogenesis of these conditions largely due to complexities among Nrxns and their non-canonical functions in different synapses. Recent studies identified NRXN2 mutations in ASD and epilepsy, but little is known about Nrxn2’s role in a circuit-specific manner. Here, we report that conditional deletion of Nrxn2 from the hippocampus and cortex (Nrxn2 cKO) results in behavioral abnormalities, including reduced social preference and increased nestlet shredding behavior. Electrophysiological recordings identified an overall increase in hippocampal CA3→CA1 network activity in Nrxn2 cKO mice. Using intracranial electroencephalogram recordings, we observed unprovoked spontaneous reoccurring electrographic and behavioral seizures in Nrxn2 cKO mice. This study provides the first evidence that conditional deletion of Nrxn2 induces increased network activity that manifests into spontaneous recurrent seizures and behavioral impairments.
Disrupted operations of the reward circuit are thought to underlie major emotional disorders including depression and drug abuse. These disorders commonly arise following early life stress; however, how stress early in life enduringly impacts reward circuit functions to promote disease remains unclear. Here, we discover and characterize a novel stress-sensitive reward-circuit projection connecting the basolateral amygdala (BLA) and nucleus accumbens (NAc) that co-expresses GABA and the stress-reactive neuropeptide corticotropin-releasing hormone (CRH). We then identify a crucial role for this projection in executing the disrupted reward behaviors provoked by early-life adversity (ELA): Chemogenetic and optogenetic stimulations of the CRHGABA BLA and NAc projection in typically reared mice suppressed several reward seeking behaviors, recapitulating deficits resulting from ELA and demonstrating a key contribution of this pathway in the normal operations of the reward circuit. Next, inhibition of the CRHGABA BLA and NAc projection in adult mice that experienced ELA restored typical reward behaviors in these mice, and, in contrast, had little effect in typically reared mice, indicating a selective ELA-induced maladaptive plasticity of this reward-circuit projection. We discover a novel, stress-sensitive, reward inhibiting projection from the BLA and NAc with unique molecular features, which may provide targets for intervention in disabling mental illnesses.
Early life adversity (ELA) is a major health burden in the United States, with 62% of adults reporting at least one adverse childhood experience. These experiences during critical stages of brain development can perturb the development of neural circuits that mediate sensory cue processing and behavioral regulation. Recent studies have reported that ELA impaired the maturation of dendritic spines on neurons in the dorsolateral striatum (DLS) but not in the dorsomedial striatum (DMS). The DMS and DLS are part of two distinct corticostriatal circuits that have been extensively implicated in behavioral flexibility by regulating and integrating action selection with the reward value of those actions. To date, no studies have investigated the multifaceted effects of ELA on aspects of behavioral flexibility that require alternating between different action selection strategies or higher-order cognitive processes, and the underlying synaptic transmission in corticostriatal circuitries. To address this, we employed whole-cell patch-clamp electrophysiology to assess the effects of ELA on synaptic transmission in the DMS and DLS. We also investigated the effects of ELA on the ability to update action control in response to outcome devaluation in an instrumental learning paradigm and reversal of action-outcome contingency in a water T-maze paradigm. At the circuit level, ELA decreased corticostriatal glutamate transmission in male but not in female mice. Interestingly, in DMS, glutamate transmission is decreased in male ELA mice, but increased in female ELA mice. ELA impaired the ability to update action control in response to reward devaluation in a context that promotes goal-directedness in male mice and induced deficits in reversal learning. Overall, our findings demonstrate the sex- and region-dependent effects of ELA on behavioral flexibility and underlying corticostriatal glutamate transmission. By establishing a link between ELA and circuit mechanisms underlying behavioral flexibility, our findings will begin to identify novel molecular mechanisms that can represent strategies for treating behavioral inflexibility in individuals who experienced early life traumatic incidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.