We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a V p model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.
In this study, three months of records (January–March 2010) that were acquired by a geodetic Global Navigation Satellite Systems (GNSS) station from the permanent network of RGP (Réseau GNSS Permanent), which was deployed by the French Geographic Institute (IGNF), located in Socoa, in the south of the Bay of Biscay, were used to determine the tide components and identify the signature of storms on the signal to noise ratio (SNR) during winter 2010. The Xynthia storm hit the French Atlantic coast on the 28th of February 2010, causing large floods and damages from the Gironde to the Loire estuaries. Blind separation of the tide components and of the storm signature was achieved while using both a singular spectrum analysis (SSA) and a continuous wavelet transform (CWT). A correlation of 0.98/0.97 and root mean square error (RMSE) of 0.21/0.28 m between the tide gauge records of Socoa and our estimates of the sea surface height (SSH) using the SSA and the CWT, respectively, were found. Correlations of 0.76 and 0.7 were also obtained between one of the modes from the SSA and atmospheric pressure from a meteorological station and a mode of the SSA. Particularly, a correlation reaches to 0.76 when using both the tide residual that is associated to surges and atmospheric pressure variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.