Background: Early, accurate diagnosis of mild traumatic brain injury (mTBI) can improve clinical outcomes for patients, but mTBI remains difficult to This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Objective The goals of this study were to assess the ability of salivary non-coding RNA (ncRNA) levels to predict post-concussion symptoms lasting ≥ 21 days, and to examine the ability of ncRNAs to identify recovery compared to cognition and balance. Methods RNA sequencing was performed on 505 saliva samples obtained longitudinally from 112 individuals (8–24-years-old) with mild traumatic brain injury (mTBI). Initial samples were obtained ≤ 14 days post-injury, and follow-up samples were obtained ≥ 21 days post-injury. Computerized balance and cognitive test performance were assessed at initial and follow-up time-points. Machine learning was used to define: (1) a model employing initial ncRNA levels to predict persistent post-concussion symptoms (PPCS) ≥ 21 days post-injury; and (2) a model employing follow-up ncRNA levels to identify symptom recovery. Performance of the models was compared against a validated clinical prediction rule, and balance/cognitive test performance, respectively. Results An algorithm using age and 16 ncRNAs predicted PPCS with greater accuracy than the validated clinical tool and demonstrated additive combined utility (area under the curve (AUC) 0.86; 95% CI 0.84–0.88). Initial balance and cognitive test performance did not differ between PPCS and non-PPCS groups (p > 0.05). Follow-up balance and cognitive test performance identified symptom recovery with similar accuracy to a model using 11 ncRNAs and age. A combined model (ncRNAs, balance, cognition) most accurately identified recovery (AUC 0.86; 95% CI 0.83–0.89). Conclusions ncRNA biomarkers show promise for tracking recovery from mTBI, and for predicting who will have prolonged symptoms. They could provide accurate expectations for recovery, stratify need for intervention, and guide safe return-to-activities.
Recurrent concussions increase risk for persistent post-concussion symptoms, and may lead to chronic neurocognitive deficits. Little is known about the molecular pathways that contribute to persistent concussion symptoms. We hypothesized that salivary measurement of microribonucleic acids (miRNAs), a class of epitranscriptional molecules implicated in concussion pathophysiology, would provide insights about the molecular cascade resulting from recurrent concussions. This hypothesis was tested in a case-control study involving 13 former professional football athletes with a history of recurrent concussion, and 18 age/sex-matched peers. Molecules of interest were further validated in a cross-sectional study of 310 younger individuals with a history of no concussion (n = 230), a single concussion (n = 56), or recurrent concussions (n = 24). There was no difference in neurocognitive performance between the former professional athletes and their peers, or among younger individuals with varying concussion exposures. However, younger individuals without prior concussion outperformed peers with prior concussion on three balance assessments. Twenty salivary miRNAs differed (adj. p < 0.05) between former professional athletes and their peers. Two of these (miR-28-3p and miR-339-3p) demonstrated relationships (p < 0.05) with the number of prior concussions reported by younger individuals. miR-28-3p and miR-339-5p may play a role in the pathophysiologic mechanism involved in cumulative concussion effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.