We fit a new gold embedded atom method (EAM) potential using an improved force matching methodology which included fitting to high-temperature solid lattice constants and liquid densities. The new potential shows a good overall improvement in agreement to the experimental lattice constants, elastic constants, stacking fault energy, radial distribution function, and fcc/hcp/bcc lattice energy differences over previous potentials by Foiles, Baskes, and Daw (FBD) [Phys. Rev. B 33, 7983 (1986)] Johnson [Phys. Rev. B 37, 3924 (1988)], and the glue model potential by Ercolessi et al. [Philos. Mag. A 50, 213 (1988)]. Surface energy was improved slightly as compared to potentials by FBD and Johnson but as a result vacancy formation energy is slightly inferior as compared to the same potentials. The results obtained here for gold suggest for other metal species that further overall improvements in potentials may still be possible within the EAM framework with an improved fitting methodology. On the other hand, we also explore the limitations of the EAM framework by attempting a brute force fit to all properties exactly which was found to be unsuccessful. The main conflict in such a brute force fit was between the surface energy and the liquid lattice constant where both could not be fitted identically. By intentionally using a very large number of spline sections for the pair potential, electron-density function, and embedding energy function, we eliminated a lack of functional freedom as a possible cause of this conflict and hence can conclude that it must result from a fundamental limitation in the EAM framework.
A novel lambda-integration path is proposed for calculating the Gibbs free energy difference between any arbitrary solid and liquid state needed for the location of melting lines. This technique involves reversibly forcing a liquid state to a solid state across the phase transition along a nonphysical path, thermodynamically coupling the two states directly. The process eliminates the need for coupling to idealized reference states as is presently performed and hence simplifies the location of phase transitions for computer simulation systems. More specifically the path involves a three stage process, whereby, initially a liquid state is transformed to a weakly attractive fluid using linear lambda-integration scaling of the intermolecular potential. In the second stage, the resulting fluid is then constrained to the required solid configurational phase space via the insertion of a periodic lattice of 3D Gaussian wells. The final stage involves reversing to full strength the main intermolecular potential while gradually turning off the constraining 3D Gaussian lattice finally resulting in a stable (or metastable) solid state. Each stage was found to be completely reversible and the resulting change in free energy was thermodynamically integrable. The methodology is demonstrated and validated by calculating solid-liquid coexistence points using the new technique and comparing to those in present literature for the truncated and shifted Lennard-Jones system. The results are found to be in good agreement. The new method is not limited to melting phase transitions and is readily applicable to any simulation methodology, simulation cell size and/or intermolecular potential including ab initio methods.
In this computational study, we used molecular dynamics and the embedded atom method to successfully reproduce the growth of gold nanorod morphologies from starting spherical seeds in the presence of model surfactants. The surfactant model was developed through extensive systematic attempts aimed at inducing nonisotropic nanoparticle growth in strictly isotropic computational growth environments. The aim of this study was to identify key properties of the surfactants which were most important for the successful anisotropic growth of nanorods. The observed surface and collective dynamics of surfactants shed light on the likely growth phenomena of real nanoprods. These phenomena include the initial thermodynamically driven selective adsorption, segregation, and orientation of the surfactant groups on specific crystallographic surfaces of spherical nanoparticle seeds and the kinetic elongation of unstable surfaces due to growth inhibiting surfactants on those surfaces. Interestingly, the model not only reproduced the growth of nearly all known nanorod morphologies when starting from an initial fcc or fivefold seed but also reproduced the experimentally observed failure of nanorod growth when starting from spherical nanoparticles such as the I(h) morphology or morphologies containing a single twinning plane. Nanorod morphologies observed in this work included fivefold nanorods, fcc crystalline nanorods in the [100] direction and [112] directions and the more exotic "dumbell-like" nanorods. Non-nanorod morphologies observed included the I(h) and the nanoprism morphology. Some of the key properties of the most successful surfactants seemed to be suggestive of the important but little understood role played by silver ions in the growth process of real nanorods.
The authors use a newly fitted gold embedded atom method potential to simulate the initial nucleation, coalescence, and kinetic growth process of vapor synthesized gold nanoparticles. Overall the population statistics obtained in this work seemed to mirror closely recent experimental HREM observations by Koga and Sugawara [Surf. Sci. 529, 23 (2003)] of inert gas synthesized nanoparticles, in the types of nanoparticles produced and qualitatively in their observance ratio. Our results strongly indicated that early stage coalescence (sintering) events and lower temperatures are the mainly responsible for the occurrence of the Dh and fcc based morphologies, while "ideal" atom by atom growth conditions produced the Ih morphology almost exclusively. These results provide a possible explanation as to why the Dh to Ih occurrence ratio increases as a function of nanoparticle size as observed by Koga and Sugawara.
Gold nanoclusters in the size range of 3 -8 nm in diameter ͑923-10179͒ atoms were studied using the embedded atom method ͑EAM͒ "glue" potential. Three common structural morphologies for gold nanoclusters were considered: Icosahedral, defected icosahedral, and amorphous. The clusters were structurally relaxed and then analyzed by a structure measure technique using planar graphs. The free energies for the different cluster morphologies are also predicted as a function of cluster size. We show that glue potential can correctly predict the most stable structures observed in experiments from molecular dynamics simulations within the nanocluster size range we considered and that the effect of surface disorder is important in considering the stability of the nanoclusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.