Powerful entropy-based tests for normality, uniformity and exponentiality have been well addressed in the statistical literature. The density-based empirical likelihood approach improves the performance of these tests for goodness-of-fit, forming them into approximate likelihood ratios. This method is extended to develop two-sample empirical likelihood approximations to optimal parametric likelihood ratios, resulting in an efficient test based on samples entropy. The proposed and examined distribution-free twosample test is shown to be very competitive with well-known nonparametric tests. For example, the new test has high and stable power detecting a nonconstant shift in the two-sample problem, when Wilcoxon's test may break down completely. This is partly due to the inherent structure developed within Neyman-Pearson type lemmas. The outputs of an extensive Monte Carlo analysis and real data example support our theoretical results. The Monte Carlo simulation study indicates that the proposed test compares favorably with the standard procedures, for a wide range of null and alternative distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.