To enable arrayed or pooled loss-of-function screens in a wide range of mammalian cell types, including primary and nondividing cells, we are developing lentiviral short hairpin RNA (shRNA) libraries targeting the human and murine genomes. The libraries currently contain 104,000 vectors, targeting each of 22,000 human and mouse genes with multiple sequence-verified constructs. To test the utility of the library for arrayed screens, we developed a screen based on high-content imaging to identify genes required for mitotic progression in human cancer cells and applied it to an arrayed set of 5,000 unique shRNA-expressing lentiviruses that target 1,028 human genes. The screen identified several known and approximately 100 candidate regulators of mitotic progression and proliferation; the availability of multiple shRNAs targeting the same gene facilitated functional validation of putative hits. This work provides a widely applicable resource for loss-of-function screens, as well as a roadmap for its application to biological discovery.
Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced δ-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell–cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
Agrobacterium tumefaciens is a plant pathogen capable of transferring a defined segment of DNA to a host plant, generating a gall tumor. Replacing the transferred tumor-inducing genes with exogenous DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the development of modern plant genetics and agricultural biotechnology. Here we describe the genome of A. tumefaciens strain C58, which has an unusual structure consisting of one circular and one linear chromosome. We discuss genome architecture and evolution and additional genes potentially involved in virulence and metabolic parasitism of host plants.
RNA interference (RNAi) is a potent and specifi c mechanism for regulating gene expression. Harnessing RNAi to silence genes involved in disease holds promise for the development of a new class of therapeutics. Delivery is key to realizing the potential of RNAi, and lipid nanoparticles (LNP) have proved effective in delivery of siRNAs to the liver and to tumors in animals. To examine the activity and safety of LNP-formulated siRNAs in humans, we initiated a trial of ALN-VSP, an LNP formulation of siRNAs targeting VEGF and kinesin spindle protein (KSP), in patients with cancer. Here, we show detection of drug in tumor biopsies, siRNA-mediated mRNA cleavage in the liver, pharmacodynamics suggestive of target downregulation, and antitumor activity, including complete regression of liver metastases in endometrial cancer. In addition, we show that biweekly intravenous administration of ALN-VSP was safe and well tolerated. These data provide proof-of-concept for RNAi therapeutics in humans and form the basis for further development in cancer. SIGNIFICANCE:The fi ndings in this report show safety, pharmacokinetics, RNAi mechanism of action, and clinical activity with a novel fi rst-in-class LNP-formulated RNAi therapeutic in patients with cancer. The ability to harness RNAi to facilitate specifi c multitargeting, as well as increase the number of druggable targets, has important implications for future drug development in oncology. Cancer Discov; 3(4); 406-17.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.