Sulfur and selenium occur in proteins as constituents of the amino acids cysteine, methionine, selenocysteine, and selenomethionine. Recent research underscores that these amino acids are truly exceptional. Their redox activity under physiological conditions allows an amazing variety of posttranslational protein modifications, metal free redox pathways, and unusual chalcogen redox states that increasingly attract the attention of biological chemists. Unlike any other amino acid, the "redox chameleon" cysteine can participate in several distinct redox pathways, including exchange and radical reactions, as well as atom-, electron-, and hydride-transfer reactions. It occurs in various oxidation states in the human body, each of which exhibits distinctive chemical properties (e.g. redox activity, metal binding) and biological activity. The position of selenium in the periodic table between the metals and the nonmetals makes selenoproteins ideal catalysts for many biological redox transformations. It is therefore apparent that the chalcogen amino acids cysteine, methionine, selenocysteine, and selenomethionine exhibit a unique biological chemistry that is the source of exciting research opportunities.
In biological systems, the amino acid cysteine combines catalytic activity with an extensive redox chemistry and unique metal binding properties. The interdependency of these three aspects of the thiol group permits the redox regulation of proteins and metal binding, metal control of redox activity, and ligand control of metal-based enzyme catalysis. Cysteine proteins are therefore able to act as "redox switches," to sense concentrations of oxidative stressors and unbound zinc ions in the cytosol, to provide a "storage facility" for excess metal ions, to control the activity of metalloproteins, and to take part in important regulatory and signaling pathways. The diversity of cysteine's multiple roles in vivo is equally as fascinating as it is promising for future biochemical and pharmacological research.
The ingredients of oxidative stress include a variety of reactive species such as reactive oxygen and reactive nitrogen species (ROS, RNS). While sulfur is usually considered as part of cellular antioxidant systems there is mounting evidence that reactive sulfur species (RSS) with stressor properties similar to the ones found in ROS are formed under conditions of oxidative stress. Thiols as well as disulfides are easily oxidised to sulfur species with sulfur in higher oxidation states. Such agents include thiyl radicals, disulfides, sulfenic acids and disulfide-S-oxides. They rapidly oxidise and subsequently inhibit thiol-proteins and enzymes and can be considered as a separate class of oxidative stressors providing new antioxidant drug targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.