Medical staff caring for COVID-
BackgroundRabies is a serious yet neglected public health threat in resource-limited communities in Africa, where the virus is maintained in populations of owned, free-roaming domestic dogs. Rabies elimination can be achieved through the mass vaccination of dogs, but maintaining the critical threshold of vaccination coverage for herd immunity in these populations is hampered by their rapid turnover. Knowledge of the population dynamics of free-roaming dog populations can inform effective planning and implementation of mass dog vaccination campaigns to control rabies.Methodology/Principal FindingsWe implemented a health and demographic surveillance system in dogs that monitored the entire owned dog population within a defined geographic area in a community in Mpumalanga Province, South Africa. We quantified demographic rates over a 24-month period, from 1st January 2012 through 1st January 2014, and assessed their implications for rabies control by simulating the decline in vaccination coverage over time. During this period, the population declined by 10%. Annual population growth rates were +18.6% in 2012 and -24.5% in 2013. Crude annual birth rates (per 1,000 dog-years of observation) were 451 in 2012 and 313 in 2013. Crude annual death rates were 406 in 2012 and 568 in 2013. Females suffered a significantly higher mortality rate in 2013 than males (mortality rate ratio [MRR] = 1.54, 95% CI = 1.28–1.85). In the age class 0–3 months, the mortality rate of dogs vaccinated against rabies was significantly lower than that of unvaccinated dogs (2012: MRR = 0.11, 95% CI = 0.05–0.21; 2013: MRR = 0.31, 95% CI = 0.11–0.69). The results of the simulation showed that achieving a 70% vaccination coverage during annual campaigns would maintain coverage above the critical threshold for at least 12 months.Conclusions and SignificanceOur findings provide an evidence base for the World Health Organization’s empirically-derived target of 70% vaccination coverage during annual campaigns. Achieving this will be effective even in highly dynamic populations with extremely high growth rates and rapid turnover. This increases confidence in the feasibility of dog rabies elimination in Africa through mass vaccination.
A lack of surveillance and diagnostics for zoonotic diseases in rural human clinics limits clinical awareness of these diseases. We assessed the prevalence of nine zoonotic pathogens in a pastoral, low-income, HIV-endemic community bordering wildlife reserves in South Africa. Two groups of participants were included: malaria-negative acute febrile illness (AFI) patients, called febrilers, at three clinics (n = 74) and second, farmers, herders, and veterinary staff found at five government cattle dip-tanks, called dip-tanksters (n = 64). Blood samples were tested using one PCR (Bartonella spp.) and eight antibody-ELISAs, and questionnaires were conducted to assess risk factors. Seventy-seven percent of febrilers and 98% of dip-tanksters had at least one positive test. Bartonella spp. (PCR 9.5%), spotted fever group (SFG) Rickettsia spp. (IgM 24.1%), Coxiella burnetii. (IgM 2.3%), and Leptospira spp. (IgM 6.8%) were present in febrilers and could have been the cause of their fever. Dip-tanksters and febrilers had evidence of past infection to Rickettsia spp. (IgG 92.2% and 63.4%, respectively) and C. burnetii (IgG 60.9% and 37.8%, respectively). No Brucella infection or current Bartonella infection was found in the dip-tanksters, although they had higher levels of recent exposure to Leptospira spp. (IgM 21.9%) compared to the febrilers. Low levels of West Nile and Sindbis, and no Rift Valley fever virus exposure were found in either groups. The only risk factor found to be significant was attending dip-tanks in febrilers for Q fever (p = 0.007). Amoxicillin is the local standard treatment for AFI, but would not be effective for Bartonella spp. infections, SFG rickettsiosis, Q fever infections, or the viral infections. There is a need to revise AFI treatment algorithms, educate medical and veterinary staff about these pathogens, especially SFG rickettsiosis and Q fever, support disease surveillance systems, and inform the population about reducing tick and surface water contact.
Evidence suggests that rabies vaccine may have non-specific protective effects in animals and children. We analyzed four years of data (2012-2015) from an observational study of the health and demographics of a population of owned, free-roaming dogs in a low-income community in South Africa. The objective of this analysis was to assess the association between rabies vaccine and all-cause mortality in dogs, stratified by age group (0-3months, 4-11months, and 12months and older), and controlling for the effects of sex and number of dogs in the residence. Rabies vaccination reduced the risk of death from any cause by 56% (95% CI=16-77%) in dogs aged 0-3months, by 44% (95% CI=21-60%) in dogs aged 4-11months and by 16% (95% CI=0-29%) in dogs aged 12months and older. We hypothesize that the protective association between rabies vaccination status and all-cause mortality is due to a protective effect of rabies vaccine against diseases other than rabies. Existence of a strong non-specific protective effect of rabies vaccine on mortality in dogs would have implications for the design of dog rabies control programs that aim to eliminate dog-mediated human rabies cases. Further, we propose that owned domestic dogs in high mortality settings provide a useful animal model to better understand any non-specific protective effect of rabies vaccine in children, due to dogs' high numbers, high morbidity and mortality rates, relatively short lifespan, exposure to a variety of infectious and parasitic diseases, and shared environment with people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.