Abstract. Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea ice, and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the HadCM3 coupled general circulation model. This model was developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies, but has now been largely superseded for many scientific studies by more recently developed models. However, it continues to be extensively used by various institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that the original documentation is not entirely representative, and several other relatively undocumented configurations are in use. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B), the coupled model with a low-resolution ocean (HadCM3BL), the high-resolution atmosphere-only model (HadAM3BH), and the regional model (HadRM3B). These also include three versions of the land surface scheme. By comparing withPublished by Copernicus Publications on behalf of the European Geosciences Union. observational datasets, we show that these models produce a good representation of many aspects of the climate system, including the land and sea surface temperatures, precipitation, ocean circulation, and vegetation. This evaluation, combined with the relatively fast computational speed (up to 1000 times faster than some CMIP6 models), motivates continued development and scientific use of the HadCM3B family of coupled climate models, predominantly for quantifying uncertainty and for long multi-millennial-scale simulations.
Abstract. Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( > 800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼ 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 × CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
Editor's Summary The prolific commentary disseminated via Twitter on the riots in London and other British cities in August 2011 has given rise to the question of whether their reflection in such social media forums may have added to the unrest. Investigators analyzed 600,000 tweets and retweets about the riots for evidence that Twitter was used as a central organizational tool to promote illegal group action. Results indicated that irrelevant tweets died out and that Twitter users retweeted to show support for their beliefs in others' commentaries. Tweets offered by well‐known and popular individuals were more likely to be retweeted. In the case of the British riots, there is little overt evidence that Twitter was used to promote illegal activities at the time, though it was useful for spreading word about subsequent events.
Abstract. Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea-ice and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both of ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the coupled general circulation model HadCM3. This model was originally developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies but is now largely being replaced by more recent models. However, it continues to be extensively used by the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol and elsewhere. Over time, adaptations have been made to the base HadCM3 model. These adaptations mean that the original documentation is not entirely representative, and several other configurations are in use which now differ from the originally described model versions. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, including the atmosphere-only model (HadAM3), the coupled model with a low resolution ocean (HadCM3L), the high resolution atmosphere only model (HadAM3H), the regional model (HadRM3) and a fast coupled model (FAMOUS), which together make up HadCM3@Bristol version 1.0. These also include three versions of the land surface scheme. By comparing with observational datasets, we show that these models produce a good representation of many aspects of the climate system, including the land and sea surface temperatures, precipitation, ocean circulation and vegetation. This evaluation, combined with the relatively fast computational speed (up to 2000× faster than some CMIP6 models), motivates continued development and scientific use of the HadCM3 family of coupled climate models, particularly for quantifying uncertainty and for long multi-millennial scale simulations.
We present a case study that informs the creation of a 'companion guide' providing transparency to potential non-expert users of a ubiquitous machine learning (ML) platform during the initial onboarding. Ubiquitous platforms (e.g., smart home systems, including smart meters and conversational agents) are increasingly commonplace and increasingly apply complex ML methods. Understanding how non-ML experts comprehend these platforms is important in supporting participants in making an informed choice about if and how they adopt these platforms. To aid this decision-making process, we created a companion guide for a home health platform through an iterative user-centred-design process, seeking additional input from platform experts at all stages of the process to ensure the accuracy of explanations. This user-centred and expert informed design process highlights the need to present the platform's entire ecosystem at an appropriate level for those with differing backgrounds to understand, in order to support informed consent and decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.