Episodes of mass coral bleaching have been reported in recent decades and have raised concerns about the future of coral reefs on a warming planet. Despite the efforts to enhance and coordinate coral reef monitoring within and across countries, our knowledge of the geographic extent of mass coral bleaching over the past few decades is incomplete. Existing databases, like ReefBase, are limited by the voluntary nature of contributions, geographical biases in data collection, and the variations in the spatial scale of bleaching reports. In this study, we have developed the first-ever gridded, global-scale historical coral bleaching database. First, we conducted a targeted search for bleaching reports not included in ReefBase by personally contacting scientists and divers conducting monitoring in under-reported locations and by extracting data from the literature. This search increased the number of observed bleaching reports by 79%, from 4146 to 7429. Second, we employed spatial interpolation techniques to develop annual 0.04° × 0.04° latitude-longitude global maps of the probability that bleaching occurred for 1985 through 2010. Initial results indicate that the area of coral reefs with a more likely than not (>50%) or likely (>66%) probability of bleaching was eight times higher in the second half of the assessed time period, after the 1997/1998 El Niño. The results also indicate that annual maximum Degree Heating Weeks, a measure of thermal stress, for coral reefs with a high probability of bleaching increased over time. The database will help the scientific community more accurately assess the change in the frequency of mass coral bleaching events, validate methods of predicting mass coral bleaching, and test whether coral reefs are adjusting to rising ocean temperatures.
Migration is an effective behavioral strategy for prolonging access to seasonal resources and may be a resilient strategy for ungulates experiencing changing climatic conditions. In the Greater Yellowstone Ecosystem (GYE), elk are the primary ungulate, with approximately 20,000 individuals migrating to exploit seasonal gradients in forage while also avoiding energetically costly snow conditions. How climate‐induced changes in plant phenology and snow accumulation are influencing elk migration timing is unknown. We present the most complete record of elk migration across the GYE, spanning 9 herds and 414 individuals from 2001 to 2017, to evaluate the drivers of migration timing and test for temporal shifts. The timing of elk departure from winter range involved a trade‐off between current and anticipated forage conditions, while snow melt governed summer range arrival date. Timing of elk departure from summer range and arrival on winter range were both influenced by snow accumulation and exposure to hunting. At the GYE scale, spring and fall migration timing changed through time, most notably with winter range arrival dates becoming almost 50 days later since 2001. Predicted herd‐level changes in migration timing largely agreed with observed GYE‐wide changes—except for predicted winter range arrival dates which did not reflect the magnitude of change detected in the elk telemetry data. Snow melt, snow accumulation, and spring green‐up dates all changed through time, with different herds experiencing different rates and directions of change. We conclude that elk migration is plastic, is a direct response to environmental cues, and that these environmental cues are not changing in a consistent manner across the GYE. The impacts of changing elk migration timing on predator–prey dynamics, carnivore–livestock conflict, disease ecology, and harvest management across the GYE are likely to be significant and complex.
Determining drivers of species richness is recognised as highly complex, involving many synergies and interactions. We examine the utility of newly available remote sensing representations of vegetation productivity and vegetation structure to examine drivers of species richness at continental and regional scales. We related richness estimates derived from stacked species distribution models for birds, mammals, amphibians, and reptiles to estimates of actual and potential evapotranspiration (AET and PET), forest structure, and forest productivity across Australia as a whole as well as by bioclimatic zones. We used structural equation modeling to partition correlations between climate energy and vegetation attributes and their subsequent associations with species richness. Continentally, vertebrate richness patterns were strongly related to patterns of energy availability. Richness of amphibians, mammals, and birds were positively associated with AET. However, reptile richness was most strongly associated with PET. Regionally, forest structure and productivity associations with bird, mammal, and amphibian richness were strongest. Again, reptile richness associated most strongly with PET. Our results suggest that a hierarchy of drivers of broad‐scale vertebrate richness patterns exist (reptiles excluded): 1) climate energy is most important at the continental scale; next, 2) vegetation productivity and vegetation structure are most important at the regional scale; except 3) at low extremes of climate energy when energy becomes limiting.
Fire regimes are changing throughout the North American boreal forest in complex ways. Fire is also a major factor governing access to high‐quality forage such as terricholous lichens for barren‐ground caribou (Rangifer tarandus groenlandicus). Additionally, fire alters forest structure which can affect barren‐ground caribou's ability to navigate in a landscape. Here, we characterize how the size and severity of fires are changing across five barren‐ground caribou herd ranges in the Northwest Territories and Nunavut, Canada. Additionally, we demonstrate how time since fire, fire severity, and season result in complex changes in caribou behavioural metrics estimated using telemetry data. Fire disturbances were identified using novel gap‐free Landsat surface reflectance composites from 1985 to 2011 across all herd ranges. Burn severity was estimated using the differenced normalized burn ratio. Annual area burned and burn severity were assessed through time for each herd and related to two behavioural metrics: velocity and relative turning angle. Neither annual area burned nor burn severity displayed any temporal trend within the study period. However, certain herds, such as the Ahiak/Beverly, have more exposure to fire than other herds (i.e. Cape Bathurst had a maximum forested area burned of less than 4 km2). Time since fire and burn severity both significantly affected velocity and relative turning angles. During fall, winter, and spring, fire virtually eliminated foraging‐focused behaviour for all 26 years of analysis while more severe fires resulted in a marked increase in movement‐focused behaviour compared to unburnt patches. Between seasons, caribou used burned areas as early as 1‐year postfire, demonstrating complex, nonlinear reactions to time since fire, fire severity, and season. In all cases, increases in movement‐focused behaviour were detected postfire. We conclude that changes in caribou behaviour immediately postfire are primarily driven by changes in forest structure rather than changes in terricholous lichen availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.