Despite its widespread use, diclofenac has gastrointestinal liabilities common to nonsteroidal antiinflammatory drugs (NSAIDs) that might be reduced by concomitant administration of a gastrointestinal cytoprotectant such as nitric oxide (NO). A series of novel diclofenac esters containing a nitrosothiol (-S-NO) moiety as a NO donor functionality has been synthesized and evaluated in vivo for bioavailability, pharmacological activity, and gastric irritation. All S-NO-diclofenac derivatives acted as orally bioavailable prodrugs, producing significant levels of diclofenac in plasma within 15 min after oral administration to mice. At equimolar oral doses, S-NO-diclofenac derivatives (20a-21b) displayed rat antiinflammatory and analgesic activities comparable to those of diclofenac in the carrageenan-induced paw edema test and the mouse phenylbenzoquinone-induced writhing test, respectively. All tested S-NO-diclofenac derivatives (20a-21b) were gastric-sparing in that they elicited markedly fewer stomach lesions as compared to the stomach lesions caused by a high equimolar dose of diclofenac in the rat. Nitrosothiol esters of diclofenac comprise a novel class of NO-donating compounds having therapeutic potential as nonsteroidal antiinflammatory agents with an enhanced gastric safety profile.
A novel method for palladium-catalyzed stereoselective formation of alpha-O-glycosides has been developed. This strategy relies on the palladium-biaryl phosphine catalyst-glycal donor complexation to control the anomeric selectivity. It does not depend on the nature of the protecting groups on the substrates, thus eliminating the need for cumbersome protecting group manipulations.
A novel palladium(II)-catalyzed stereoselective synthesis of alpha- and beta-N-glycosyl trichloroacetamides has been developed. The alpha- and beta-selectivity at the anomeric carbon depends on the nature of the palladium-ligand catalyst. While the cationic palladium(II) promotes the alpha-selectivity, the neutral palladium(II) favors the beta-selectivity.
The development of a general and practical method for the stereoselective synthesis of beta-O-aryl glycosides that exploits the nature of a cationic palladium(II) catalyst, instead of a C(2)-ester directing group, to control the beta-selectivity is described. This beta-glycosylation reaction is highly diastereoselective and requires 2-3 mol % of Pd(CH(3)CN)(4)(BF(4))(2) to activate glycosyl trichloroacetimidate donors at room temperature. The current method has been applied to d-glucose, d-galactose, and d-xylose donors with a nondirecting group incorporated at the C(2)-position to provide the O-aryl glycosides with good to excellent beta-selectivity. In addition, its application is widespread to electron-donating, electron-withdrawing, and hindered phenols. The reaction is likely to proceed through a seven-membered ring intermediate, wherein the palladium catalyst coordinates to both C(1)-trichloroacetimidate nitrogen and C(2)-oxygen of the donor, blocking the alpha-face. As a result, the phenol nucleophile preferentially approaches to the top face of the activated donor, leading to formation of the beta-O-aryl glycoside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.