The ability to accurately measure real-time pH fluctuations in-vivo could be highly advantageous. Early detection and potential prevention of bacteria colonization of surgical implants can be accomplished by monitoring associated acidosis. However, conventional glass membrane or ion-selective field-effect transistor (ISFET) pH sensing technologies both require a reference electrode which may suffer from leakage of electrolytes and potential contamination. Herein, we describe a solid-state sensor based on oxidized single-walled carbon nanotubes (ox-SWNTs) functionalized with the conductive polymer poly(1-aminoanthracene) (PAA). This device had a Nernstian response over a wide pH range (2–12) and retained sensitivity over 120 days. The sensor was also attached to a passively-powered radio-frequency identification (RFID) tag which transmits pH data through simulated skin. This battery-less, reference electrode free, wirelessly transmitting sensor platform shows potential for biomedical applications as an implantable sensor, adjacent to surgical implants detecting for infection.
Acetone is a metabolic byproduct found in the exhaled breath and can be measured to monitor the metabolic degree of ketosis. In this state, the body uses free fatty acids as its main source of fuel because there is limited access to glucose. Monitoring ketosis is important for type I diabetes patients to prevent ketoacidosis, a potentially fatal condition, and individuals adjusting to a low-carbohydrate diet. Here, we demonstrate that a chemiresistor fabricated from oxidized single-walled carbon nanotubes functionalized with titanium dioxide (SWCNT@ TiO 2 ) can be used to detect acetone in dried breath samples. Initially, due to the high cross sensitivity of the acetone sensor to water vapor, the acetone sensor was unable to detect acetone in humid gas samples. To resolve this cross-sensitivity issue, a dehumidifier was designed and fabricated to dehydrate the breath samples. Sensor response to the acetone in dried breath samples from three volunteers was shown to be linearly correlated with the two other ketone bodies, acetoacetic acid in urine and βhydroxybutyric acid in the blood. The breath sampling and analysis methodology had a calculated acetone detection limit of 1.6 ppm and capable of detecting up to at least 100 ppm of acetone, which is the dynamic range of breath acetone for someone with ketosis. Finally, the application of the sensor as a breath acetone detector was studied by incorporating the sensor into a handheld prototype breathalyzer.
The use of Big Data—however the term is defined—involves a wide array of issues and stakeholders, thereby increasing numbers of complex decisions around issues including data acquisition, use, and sharing. Big Data is becoming a significant component of practice in an ever-increasing range of disciplines; however, since it is not a coherent “discipline” itself, specific codes of conduct for Big Data users and researchers do not exist. While many institutions have created, or will create, training opportunities (e.g., degree programs, workshops) to prepare people to work in and around Big Data, insufficient time, space, and thought have been dedicated to training these people to engage with the ethical, legal, and social issues in this new domain. Since Big Data practitioners come from, and work in, diverse contexts, neither a relevant professional code of conduct nor specific formal ethics training are likely to be readily available. This normative paper describes an approach to conceptualizing ethical reasoning and integrating it into training for Big Data use and research. Our approach is based on a published framework that emphasizes ethical reasoning rather than topical knowledge. We describe the formation of professional community norms from two key disciplines that contribute to the emergent field of Big Data: computer science and statistics. Historical analogies from these professions suggest strategies for introducing trainees and orienting practitioners both to ethical reasoning and to a code of professional conduct itself. We include two semester course syllabi to strengthen our thesis that codes of conduct (including and beyond those we describe) can be harnessed to support the development of ethical reasoning in, and a sense of professional identity among, Big Data practitioners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.