We have recently reported the interplay between apparent aqueous solubility and intestinal membrane permeability, showing the trade-off between the two when using cyclodextrin- and surfactant-based systems as solubility-enabling formulations. In these cases, the decreased permeability could be attributed directly to decreased free fraction of drug due to the complexation/micellization inherent in these solubilization methods. The purpose of this study was to investigate the direct solubility-permeability interplay, using formulations in which complexation is not the mechanism for increased solubilization. The apparent aqueous solubility (S(aq)) and rat intestinal permeability (P(eff)) of the lipophilic drug progesterone were measured in systems containing various levels of the cosolvents propylene glycol and PEG-400, since this solubilization method does not involve decreased free fraction. Thermodynamic activity was maintained equivalent in all permeability studies (75% equilibrium solubility). Both cosolvents increased progesterone S(aq) in nonlinear fashion. Decreased P(eff) with increased S(aq) was observed, despite the constant thermodynamic activity, and the nonrelevance of free fraction. A mass-transport analysis was developed to describe this interplay. The model considers the effects of solubilization on the membrane permeability (P(m)) and the unstirred water layer (UWL) permeability (P(aq)), to predict the overall P(eff) dependence on S(aq). The analysis revealed that (1) the effective UWL thickness quickly decreases with ↑S(aq), such that P(aq) markedly increases with ↑S(aq); (2) the apparent membrane/aqueous partitioning decreases with ↑S(aq), thereby reducing the thermodynamic driving force for permeability such that ↓P(m) with ↑S(aq); (3) since ↑P(aq) and ↓P(m) with ↑S(aq), the UWL is shorted out and P(eff) becomes membrane control with ↑S(aq). The model enabled excellent quantitative prediction of P(eff) as a function of S(aq). This work demonstrates that a direct trade-off exists between the apparent solubility and permeability, which must be taken into account when developing solubility-enabling formulations to strike the optimal solubility-permeability balance, in order to maximize the overall oral absorption.
This article intends to summarize the current views of the IQ Consortium Dissolution Working Group, which comprises various industry companies, on the roles of dissolution testing throughout pharmaceutical product development, registration, commercialization, and beyond. Over the past 3 decades, dissolution testing has evolved from a routine and straightforward test as a component of end-product release into a comprehensive set of tools that the developer can deploy at various stages of the product life cycle. The definitions of commonly used dissolution approaches, how they relate to one another and how they may be applied in modern drug development, and life cycle management is described in this article. Specifically, this article discusses the purpose, advantages, and limitations of quality control, biorelevant, and clinically relevant dissolution methods.
Abstract.This manuscript represents the perspective of the Dissolution Analytical Working Group of the IQ Consortium. The intent of this manuscript is to highlight the challenges of, and to provide a recommendation on, the development of clinically relevant dissolution specifications (CRS) for immediate release (IR) solid oral dosage forms. A roadmap toward the development of CRS for IR products containing active ingredients with a non-narrow therapeutic window is discussed, within the context of mechanistic dissolution understanding, supported by in-human pharmacokinetic (PK) data. Two case studies present potential outcomes of following the CRS roadmap and setting dissolution specifications. These cases reveal some benefits and challenges of pursuing CRS with additional PK data, in light of current regulatory positions, including that of the US Food and Drug Administration (FDA), who generally favor this approach, but with the understanding that both industry and regulatory agency perspectives are still evolving in this relatively new field. The CRS roadmap discussed in this manuscript also describes a way to develop clinically relevant dissolution specifications based primarily on dissolution data for batches used in pivotal clinical studies, acknowledging that not all IR product development efforts need to be supported by additional PK studies, albeit with the associated risk of potentially unnecessarily tight manufacturing controls. Recommendations are provided on what stages during the life cycle investment into in vivo studies may be valuable. Finally, the opportunities for CRS within the context of post-approval changes, Modeling and Simulation (M&S), and the application of biowaivers, are briefly discussed.KEY WORDS: BCS; biowaivers; clinically relevant dissolution specifications; PBPK modeling; SUPAC.This article was developed with the support of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ, www.iqconsortium.org). IQ is a not-for-profit organization of pharmaceutical and biotechnology companies with a mission of advancing science and technology to augment the capability of member companies to develop transformational solutions that benefit patients, regulators, and the broader research and development community. PURPOSEThe purpose of this paper is to describe a roadmap for the development and leverage of clinically relevant dissolution specifications (CRS) for immediate release oral solid dosage forms of non-narrow therapeutic window drugs. There are three objectives for presenting this roadmap: (1) to describe multiple approaches for establishing clinical relevance for dissolution methodology, (2) to outline how to leverage clinically relevant dissolution methodology and specifications for the confirmation of the final drug product quality, and (3) to suggest recommendations on supporting scale-up and post-approval changes using the established CRS.Historically, dissolution specifications have been set by controlling the formulation and process within prec...
Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer–Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.