The drive to produce electrical energy by directly compressing piezoceramic material using mechanical stress stands behind the present test series. To be able to correctly choose the right material, PZT disks manufactured by three different manufacturers have been tested under static mechanical compressive and cyclic loads. It was shown that although the disks can withstand high mechanical stresses (up to 100 MPa) without any visible damage, their transduction is confined to much lower stresses (50-75 MPa), a range in which the electrical output is a function of the square of the applied stress. This range is further reduced, when the PZT is subjected to cyclic mechanical loading, yielding an applicable mechanical stress in the range of 30-40 MPa, from which electrical power can be produced without further deterioration. To compensate for the low electric power, due to relatively low mechanical stresses applied on the PZT disks, one can increase the volume of the material used by placing layers of piezoelectric material one on top of the other, each subjected to the same mechanical stress. This will yield the required electric power from a safe given mechanical stress without reduction in its output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.