RoboCup simulated soccer presents many challenges to reinforcement learning methods, including a large state space, hidden and uncertain state, multiple independent agents learning simultaneously, and long and variable delays in the effects of actions. We describe our application of episodic SMDP Sarsa(位) with linear tile-coding function approximation and variable 位 to learning higher-level decisions in a keepaway subtask of RoboCup soccer. In keepaway, one team, "the keepers," tries to keep control of the ball for as long as possible despite the efforts of "the takers." The keepers learn individually when to hold the ball and when to pass to a teammate. Our agents learned policies that significantly outperform a range of benchmark policies. We demonstrate the generality of our approach by applying it to a number of task variations including different field sizes and different numbers of players on each team.
Abstract.A general game player is an agent capable of taking as input a description of a game's rules in a formal language and proceeding to play without any subsequent human input. To do well, an agent should learn from experience with past games and transfer the learned knowledge to new problems. We introduce a graph-based method for identifying previously encountered games and prove its robustness formally. We then describe how the same basic approach can be used to identify similar but non-identical games. We apply this technique to automate domain mapping for value function transfer and speed up reinforcement learning on variants of previously played games. Our approach is fully implemented with empirical results in the general game playing system.
Abstract-Mobile robot localization, the ability of a robot to determine its global position and orientation, continues to be a major research focus in robotics. In most past cases, such localization has been studied on wheeled robots with rangefinding sensors such as sonar or lasers. In this paper, we consider the more challenging scenario of a legged robot localizing with a limited field-of-view camera as its primary sensory input. We begin with a baseline implementation adapted from the literature that provides a reasonable level of competence, but that exhibits some weaknesses in real-world tests. We propose a series of practical enhancements designed to improve the robot's sensory and actuator models that enable our robots to achieve a 50% improvement in localization accuracy over the baseline implementation. We go on to demonstrate how the accuracy improvement is even more dramatic when the robot is subjected to large unmodeled movements. These enhancements are each individually straightforward, but together they provide a roadmap for avoiding potential pitfalls when implementing Monte Carlo Localization on vision-based and/or legged robots.
The UT Austin Villa 2003 simulated online soccer coach was a first time entry in the RoboCup Coach Competition. In developing the coach, the main research focus was placed on treating advice-giving as a machine learning problem. Competing against a field of mostly handcoded coaches, the UT Austin Villa coach earned first place in the competition. In this paper, we present the multi-faceted learning strategy that our coach used and examine which aspects contributed most to the coach's success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.