The photochemical decarbonylation of diphenylcyclopropenone (DPCP) to diphenylacetylene (DPA) proceeds with remarkable efficiency both in solution and in the crystalline solid state. It had been previously shown that excitation to the second electronic excited state (S(2)) of DPCP in solution proceeds within ca. 200 fs by an adiabatic ring-opening pathway to yield the S(2) state of DPA, which has a lifetime of ca. 8 ps before undergoing internal conversion to S(1) (Takeuchi, S.; Tahara, T. J. Chem. Phys. 2004, 120, 4768). More recently, we showed that reactions by excitation to S(2) in crystalline solids proceed by a quantum chain process where the excited photoproducts transfer energy to neighboring molecules of unreacted starting material, which are able to propagate the chain. Quantum yields in crystalline suspensions revealed values of Phi(DPCP) = 3.3 +/- 0.3. To explore the generality of this reaction, and recognizing its potential as a photonic amplification system, we have synthesized nine crystalline diarylcyclopropenone derivatives with phenyl, biphenyl, naphthyl, and anthryl substituents. To quantify the efficiency of the quantum chain in the crystalline state, we determined the quantum yields of reaction for all of these compounds both in solution and in nanocrystalline suspensions. While the quantum yields of decarbonylation in solution vary from Phi = 0.0 to 1.0, seven of the nine new structures display quantum yields of reaction in the solid that are above 1. The chemical amplification that results from efficient energy transfer in the solid state, analyzed in terms of the quantum yields determined in the solid state and in solution (Phi(cryst)/Phi(soln)), reveals quantum chain amplification factors that range from 3.2 to 11.0. The remarkable mechanical response of the solid-to-solid reaction previously documented with macroscopic crystals, where large single-crystalline specimens turn into fine powders, was investigated at the nanometer scale. Experiments with dry crystals of DPCP analyzed by atomic force microscopy showed the formation of DPA in the form of isolated crystalline specimens ca. 35 nm in size.
We report an efficient triplet state self-quenching mechanism in crystals of eight benzophenones, which included the parent structure (1), six 4,4'-disubstituted compounds with NH(2) (2), NMe(2) (3), OH (4), OMe (5), COOH (6), and COOMe (7), and benzophenone-3,3',4,4'-tetracarboxylic dianhydride (8). Self-quenching effects were determined by measuring their triplet-triplet lifetimes and spectra using femtosecond and nanosecond transient absorption measurements with nanocrystalline suspensions. When possible, triplet lifetimes were confirmed by measuring the phosphorescence lifetimes and with the help of diffusion-limited quenching with iodide ions. We were surprised to discover that the triplet lifetimes of substituted benzophenones in crystals vary over 9 orders of magnitude from ca. 62 ps to 1 ms. In contrast to nanocrystalline suspensions, the lifetimes in solution only vary over 3 orders of magnitude (1-1000 μs). Analysis of the rate constants of quenching show that the more electron-rich benzophenones are the most efficiently deactivated such that there is an excellent correlation, ρ = -2.85, between the triplet quenching rate constants and the Hammet σ(+) values for the 4,4' substituents. Several crystal structures indicate the existence of near-neighbor arrangements that deviate from the proposed ideal for "n-type" quenching, suggesting that charge transfer quenching is mediated by a relatively loose arrangement.
A novel dendritic C(60)-H(2)P-(ZnP)(3) (P=porphyrin) conjugate gives rise to the successful mimicry of the primary events in photosynthesis, that is, light harvesting, unidirectional energy transfer, charge transfer, and charge-shift reactions. Owing, however, to the flexibility of the linkers that connect the C(60), H(2)P, and ZnP units, the outcome depends strongly on the rigidity/viscosity of the environment. In an agar matrix or Triton X-100, time-resolved transient absorption spectroscopic analysis and fluorescence-lifetime measurements confirm the following sequence. Initially, light harvesting is seen by the peripheral C(60)-H(2)P- *(ZnP)(3) conjugate. Once photoexcited, a unidirectional energy transfer funnels the singlet excited-state energy to H(2)P to form C(60)-*(H(2)P)-(ZnP)(3), which powers an intramolecular charge transfer that oxidizes the photoexcited H(2)P and reduces the adjacent C(60) species. In the correspondingly formed (C(60))(*-)-(H(2)P)(*+)-(ZnP)(3) conjugate, an intramolecular charge-shift reaction generates (C(60))(*-)-H(2)P-(ZnP)(3) (.+), in which the radical cation resides on one of the three ZnP moieties, and for which lifetimes of up to 460 ns are found. On the other hand, investigations in organic media (i.e., toluene, THF, and benzonitrile) reveal a short cut, that is, the peripheral ZnP unit reacts directly with C(60) to form (C(60))(*-)-H(2)P-(ZnP)(3) (*+). Substantial configurational rearrangements- placing ZnP and C(60) in proximity to each other-are, however, necessary to ensure the required through space interactions (i.e., close approach). Consequently, the lifetime of (C(60))(*-)-H(2)P-(ZnP)(3) (*+) is as short as 100 ps in benzonitrile.
Rare-earth (RE) (Er 3+ and Yb 3+ , Er 3+ )-doped yttrium oxide (Y 2 O 3 ) core−shell particles were synthesized in this work using a two-step process where the cores were formed by molten salt synthesis while the shell was deposited by a sol−gel process. The cores were 100−150 nm, and a shell layer, up to 12 nm thick, was controllable based on the mass ratio between the RECl 3 salts and the Er 3+ :Y 2 O 3 (1 mol %) particles. A passive Y 2 O 3 shell layer, at an optimal thickness around 8 nm, passivated the surface quenching sites and resulted in a 53% increase in photoluminescence lifetimes and visible separation in Stark splitting. Optically active shell layers, such as Yb 2 O 3 and Yb 3+ :Y 2 O 3 , not only passivated the quenching sites but also facilitated energy transfer between the spatially controlled RE ions. Furthermore, the effect of surface passivation on the upconversion luminescence was determined through the purposed dynamic processes to corroborate the effect of the hydroxyl groups on energy dissipation. The addition of a passive shell layer or a sensitizer reduced the upconversion to a two-photon process due to a decreased branching ratio at the 4 I 11/2 energy level. Yb 2 O 3 is deemed the most effective shell material due to the largest increase photoluminescence intensity at 1535 nm as a function of the pump power and the lifetime of the 4 S 3/2 radiative transition, important in upconversion luminescence. The increased lifetime and low pump power achieved with Er 3+ :Y 2 O 3 |Yb 2 O 3 core−shell phosphors hold promise in lighting devices for improved overall device efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.