Tumor metabolism and bioenergetics have become important topics for cancer research and are promising targets for anticancer therapy. Although glucose serves as the main source of energy, proline, an alternative substrate, is important, especially during nutrient stress. Proline oxidase (POX), catalyzing the first step in proline catabolism, is induced by p53 and can regulate cell survival as well as mediate programmed cell death. In a mouse xenograft tumor model, we found that POX greatly reduced tumor formation by causing G2 cell cycle arrest. Furthermore, immunohistochemical staining showed decreased POX expression in tumor tissues. Importantly, HIF-1α signaling was impaired with POX expression due to the increased production of α-ketoglutarate, a critical substrate for prolyl hydroxylation and degradation of HIF-1α. Combined with previous in vitro findings and reported clinical genetic associations, these new findings lead us to propose POX as a mitochondrial tumor suppressor and a potential target for cancer therapy.
Proline oxidase (POX), localized on inner mitochondrial membranes, is encoded by a p53-induced gene and metabolically participates in p53-induced apoptosis. Previously, we showed that POX catalyzed the generation of reactive oxygen species (ROS). We and others have demonstrated that overexpression of POX, independent of p53, causes apoptotic cell death in a variety of cancer cells. But a necessary role for ROS remains uncertain. Therefore, we asked whether superoxide dismutases (SOD) and catalase (CAT), important antioxidant enzymes, might interfere with the POX-dependent induction of apoptosis. In this study, we used DLD-1 colorectal cancer cells stably transfected with the POX gene under the control of a tetracycline-inducible promoter. When doxycycline was removed from the culture medium and the expression of POX was induced, apoptotic cell death was initiated. To examine the importance of the ROS-dependent component of the pathway, we infected DLD-1 POX cells with recombinant adenoviruses containing MnSOD, CuZnSOD, CAT or varying combinations of these adenoviruses followed by induced expression of POX. The expression of MnSOD inhibited POX-induced apoptosis, but others did not. Mechanistically, mitochondria-localized MnSOD dramatically reduced the release of cytochrome c to cytosol by POX. Compared with control cells, MnSOD-expressing DLD-1 POX cells generated a higher concentration of H2O2 owing to dismutation of superoxide radicals, which was elevated by POX. Thus, these data further suggest that the generation of superoxide radicals plays a crucial role in POX-induced apoptosis and the process is partially blocked by MnSOD.
Proline oxidase (POX), a flavoenzyme localized at the inner mitochondrial membrane, catalyzes the first step of proline degradation by converting proline to pyrroline-5-carboxylate (P5C). POX is markedly elevated during p53-induced apoptosis and generates proline-dependent reactive oxygen species (ROS), specifically superoxide radicals, to induce apoptosis through both mitochondrial and death receptor pathways. These previous studies also showed suppression of the mitogen-activated protein kinase pathway leading us to broaden our exploration of proliferative signaling. In our current report, we used DLD-1 colorectal cancer cells stably transfected with the POX gene under the control of a tetracycline-inducible promoter and found that three pathways which cross talk with each other were downregulated by POX: the cyclooxygenase-2 (COX-2) pathway, the epidermal growth factor receptor (EGFR) pathway and the Wnt/bcatenin pathway. First, POX markedly reduced COX-2 expression, suppressed the production of prostaglandin E2 (PGE 2 ) and importantly, the growth inhibition by POX was partially reversed by treatment with PGE 2. Phosphorylation of EGFR was decreased with POX expression and the addition of EGF partially reversed the POXdependent downregulation of COX-2. Wnt/b-catenin signaling was decreased by POX in that phosphorylation of glycogen synthase kinase-3b (GSK-3b) was decreased on the one hand and phosphorylation of b-catenin was increased on the other. There changes led to decreased accumulation of b-catenin and decreased b-catenin/TCF/ LEF-mediated transcription. Our newly described POXmediated suppression of proliferative signaling together with the previously reported induction of apoptosis suggested that POX could function as a tumor suppressor. Indeed, in human colorectal tissue samples, immunohistochemically-monitored POX was dramatically decreased in tumors compared with normal counterparts. Thus, POX metabolism of substrate proline affects multiple signaling pathways, modulating both apoptosis and tumor growth, and could be an attractive target to metabolically control the cancer phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.