The traditional practice to assess accuracy in lidar data involves calculating RMSEz (root mean square error of the vertical component). Accuracy assessment of lidar point clouds in full 3D (three dimension) is not routinely performed. The main challenge in assessing accuracy in full 3D is how to identify a conjugate point of a ground-surveyed checkpoint in the lidar point cloud with the smallest possible uncertainty value. Relatively coarse point-spacing in airborne lidar data makes it challenging to determine a conjugate point accurately. As a result, a substantial unwanted error is added to the inherent positional uncertainty of the lidar data. Unless we keep this additional error small enough, the 3D accuracy assessment result will not properly represent the inherent uncertainty. We call this added error “external uncertainty,” which is associated with conjugate point identification. This research developed a general external uncertainty model using three-plane intersections and accounts for several factors (sensor precision, feature dimension, and point density). This method can be used for lidar point cloud data from a wide range of sensor qualities, point densities, and sizes of the features of interest. The external uncertainty model was derived as a semi-analytical function that takes the number of points on a plane as an input. It is a normalized general function that can be scaled by smooth surface precision (SSP) of a lidar system. This general uncertainty model provides a quantitative guideline on the required conditions for the conjugate point based on the geometric features. Applications of the external uncertainty model were demonstrated using various lidar point cloud data from the U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) library to determine the valid conditions for a conjugate point from three-plane modeling.
The Leica Geosystems CountryMapper hybrid system has the potential to collect data that satisfy the U.S. Geological Survey (USGS) National Geospatial Program (NGP) and 3D Elevation Program (3DEP) and the U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) requirements in a single collection. This research will help 3DEP determine if this sensor has the potential to meet current and future 3DEP topographic lidar collection requirements. We performed an accuracy analysis and assessment on the lidar point cloud produced from CountryMapper. The boresighting calibration and co-registration by georeferencing correction based on ground control points are assumed to be performed by the data provider. The scope of the accuracy assessment is to apply the following variety of ways to measure the accuracy of the delivered point cloud to obtain the error statistics. Intraswath uncertainty from a flat surface was computed to evaluate the point cloud precision. Intraswath difference between opposite scan directions and the interswath overlap difference were evaluated to find boresighting or any systematic errors. Absolute vertical accuracy over vegetated and non-vegetated areas were also assessed. Both horizontal and vertical absolute errors were assessed using the 3D absolute error analysis methodology of comparing conjugate points derived from geometric features. A three-plane feature makes a single unique intersection point. Intersection points were computed from ground-based lidar and airborne lidar point clouds for comparison. The difference between two intersection points form one error vector. The geometric feature-based error analysis was applied to intraswath, interswath, and absolute error analysis. The CountryMapper pilot data appear to satisfy the accuracy requirements suggested by the USGS lidar specification, based upon the error analysis results. The focus of this research was to demonstrate various conventional accuracy measures and novel 3D accuracy techniques using two different error computation methods on the CountryMapper airborne lidar point cloud.
A Land Product Characterization System (LPCS) has been developed to provide land data and products to the community of individuals interested in validating space-based land products by comparing them with similar products available from other sensors or surface-based observations. The LPCS facilitates the application of global multi-satellite and in situ data for characterization and validation of higher-level, satellite-derived, land surface products (e.g., surface reflectance, normalized difference vegetation index, and land surface temperature).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.