Microsatellites occur in all plant genomes and provide useful markers for studies of genetic diversity and structure. Chloroplast microsatellites (cpSSRs) are frequently targeted because they are more easily isolated than nuclear microsatellites. Here, we quantified the frequency and uses of cpSSRs based on a literature review of over 400 studies published 1995–2013. These markers are an important and economical tool for plant biologists and continue to be used alongside modern genomics approaches to study genetic diversity and structure, evolutionary history, and hybridization in native and agricultural species. Studies using species-specific primers reported a greater number of polymorphic loci than those employing universal primers. A major disadvantage to cpSSRs is fragment size homoplasy; therefore, we documented its occurrence at several cpSSR loci within and between species of Acmispon (Fabaceae). Based on our empirical data set, we recommend targeted sequencing of a subset of samples combined with fragment genotyping as a cost-efficient, data-rich approach to the use of cpSSRs and as a test of homoplasy. The availability of genomic resources for plants aids in the development of primers for new study systems, thereby enhancing the utility of cpSSRs across plant biology.
The AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2. Downregulation of estrogen receptor (ER)-mediated cell–cell adhesion genes through DNA methylation mechanisms was observed in metastases. Microenvironment differences varied according to tumor subtype; the ER+/luminal subtype had lower fibroblast and endothelial content, while triple-negative breast cancer/basal metastases showed a decrease in B and T cells. In 17% of metastases, DNA hypermethylation and/or focal deletions were identified near HLA-A and were associated with reduced expression and lower immune cell infiltrates, especially in brain and liver metastases. These findings could have implications for treating individuals with metastatic breast cancer with immune- and HER2-targeting therapies.
The California Channel Islands are a group of eight oceanic islands located off the coast of southern California that are substantially closer to the mainland than most other well‐studied island systems. The equilibrium theory of island biogeography proposed by MacArthur and Wilson posits that species diversity on an island will be positively impacted by island area and negatively impacted by isolation, which has been confirmed for the Channel Islands. In this study, we have extended MacArthur and Wilson's theory to examine how levels of genetic diversity relate to four island characteristics (island area, distance to the mainland, distance to the nearest island, plant diversity) in the endemic perennial taxa of Acmispon (Fabaceae) on the Channel Islands. We sampled two island species of Acmispon, A. argophyllus and A. dendroideus, from all islands, and mainland sister taxa for nuclear microsatellites, low‐copy nuclear sequence and plastid sequence data. We found that only one measure of diversity from one genetic region (low‐copy nuclear) was correlated with island area, that there was no support for a relationship between genetic diversity and distance to the mainland and that distance to the nearest island was a predictor of low‐copy nuclear genetic diversity. Plant diversity was a significant predictor of plastid genetic diversity when considering all samples. We conclude that the equilibrium theory of island biogeography does not hold for measures of genetic diversity in the Channel Island endemic Acmispon based on island area and distance to the mainland. The short distance between individual islands and the mainland probably facilitates a moderate rate of mainland to island dispersal, preventing the islands from functioning as isolated biogeographic units. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174, 289–304.
The mechanisms by which natural populations generate adaptive genetic variation are not well understood. Some studies propose that microsatellites can function as drivers of adaptive variation. Here, we tested a potentially adaptive role for transcribed microsatellites with natural populations of the common sunflower (Helianthus annuus L.) by assessing the enrichment of microsatellites in genes that show expression divergence across latitudes. Seeds collected from six populations at two distinct latitudes in Kansas and Oklahoma were planted and grown in a common garden. Morphological measurements from the common garden demonstrated that phenotypic variation among populations is largely explained by underlying genetic variation. An RNA-Seq experiment was conducted with 96 of the individuals grown in the common garden and differentially expressed (DE) transcripts between the two latitudes were identified. A total number of 825 DE transcripts were identified. DE transcripts and nondifferentially expressed (NDE) transcripts were then scanned for microsatellites. The abundance of different motif lengths and types in both groups were estimated. Our results indicate that DE transcripts are significantly enriched with mononucleotide repeats and significantly depauperate in trinucleotide repeats. Further, the standardized mononucleotide repeat motif A and dinucleotide repeat motif AG were significantly enriched within DE transcripts while motif types, C, AT, ACC and AAC in DE transcripts, are significantly differentiated in microsatellite tract length between the two latitudes. The tract length differentiation at specific microsatellite motif types across latitudes and their enrichment within DE transcripts indicate a potential functional role for transcribed microsatellites in gene expression divergence in sunflower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.