In this paper we present Maestro, a model-based systems engineering (MBSE) environment for design and simulation of complex electronic systems using Orchestra-a simulation tool developed at Sandia National Laboratories. Maestro is deployed as a plugin for MagicDraw and uses Orchestra domain-specific language (DSL) which is based on SysML. Maestro enables a model-based design and analysis approach that replaces the traditional document-based systems engineering process. It provides a unified graphical modeling environment to domain experts who have had to depend on drawing tools for defining system architecture and manual transcription of system topology in creating complex simulation models.
The SSP is a hardware implementation of a subset of the JVM for use in high-consequence embedded applications. In this context, a majority of the activities belonging to class loading, as it is defined in the specification of the JVM, can be performed statically. Static class loading has the net result of dramatically simplifying the design of the SSP, as well as increasing its performance. Because of the high consequence nature of its applications, strong evidence must be provided that all aspects of the SSP have been implemented correctly. This includes the class loader. This article explores the possibility of formally verifying a class loader for the SSP implemented in the strategic programming language TL. Specifically, an implementation of the core activities of an abstract class loader is presented and its verification in ACL2 is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.