There is a great need to improve the outlook for people facing urinary bladder cancer, especially for patients with invasive urothelial carcinoma (InvUC) which is lethal in 50% of cases. Improved outcomes for patients with InvUC could come from advances on several fronts including emerging immunotherapies, targeted therapies, and new drug combinations; selection of patients most likely to respond to a given treatment based on molecular subtypes, immune signatures, and other characteristics; and prevention, early detection, and early intervention. Progress on all of these fronts will require clinically relevant animal models for translational research. The animal model(s) should possess key features that drive success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). Experimental animal models, while essential in bladder cancer research, do not possess these collective features to accurately predict outcomes in humans. These key features, however, are present in naturally-occurring InvUC in pet dogs. Canine InvUC closely mimics muscle-invasive bladder cancer in humans in cellular and molecular features, molecular subtypes, immune response patterns, biological behavior (sites and frequency of metastasis), and response to therapy. Thus, dogs can offer a highly relevant animal model to complement other models in research for new therapies for bladder cancer. Clinical treatment trials in pet dogs with InvUC are considered a win-win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. In addition, the high breedassociated risk for InvUC in dogs (e.g., 20-fold increased risk in Scottish Terriers) Knapp et al. Canine Bladder Cancer-Translational Model offers an unparalleled opportunity to test new strategies in primary prevention, early detection, and early intervention. This review will provide an overview of canine InvUC, summarize the similarities (and differences) between canine and human InvUC, and provide evidence for the expanding value of this canine model in bladder cancer research.
◥Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRb) within the TME and its restriction to the TME. This FRb þ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8 þ T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRb as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors.Significance: FRb serves as both a means to identify and target MDSCs and TAMs within the tumor, allowing for delivery of immunomodulatory compounds to tumor myeloid cells in a variety of cancers.
A group of chemotherapeutic drugs has gained increasing interest in cancer immunotherapy due to the potential to induce immunogenic cell death (ICD). A critical challenge in using the ICD inducers in cancer immunotherapy is the immunotoxicity accompanying their antiproliferative effects. To alleviate this, a nanocapsule formulation of carfilzomib (CFZ), an ICD-inducing proteasome inhibitor, was developed using interfacial supramolecular assembly of tannic acid (TA) and iron, supplemented with albumin coating. The albumin-coated CFZ nanocapsules (CFZ-pTA-alb) attenuated CFZ release, reducing toxicity to immune cells. Moreover, due to the adhesive nature of TA assembly, CFZ-pTA-alb served as a reservoir of damage-associated molecular patterns released from dying tumor cells to activate dendritic cells. Upon intratumoral administration, CFZ-pTA-alb prolonged tumor retention of CFZ and showed consistently greater antitumor effects than cyclodextrin-solubilized CFZ (CFZ-CD) in B16F10 and CT26 tumor models. Unlike CFZ-CD, the locally injected CFZ-pTA-alb protected or enhanced CD8+ T cell population in tumors, helped develop splenocytes with tumor-specific interferon-γ response, and delayed tumor development on the contralateral side in immunocompetent mice (but not in athymic nude mice), which support that CFZ-pTA-alb contributed to activating antitumor immunity. This study demonstrates that sustained delivery of ICD inducers by TA-based nanocapsules is an effective way of translating local ICD induction to systemic antitumor immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.