A series of terpene isonitriles, isolated from marine sponges, have previously been shown to exhibit antimalarial activities. Molecular modeling studies employing 3D-QSAR with receptor modeling methodologies performed with these isonitriles showed that the modeled molecules could be used to generate a pharmacophore hypothesis consistent with the experimentally derived biological activities. It was also shown that one of the modeled compounds, diisocyanoadociane (4), as well as axisonitrile-3 (2), both of which have potent antimalarial activity, interacts with heme (FP) by forming a coordination complex with the FP iron. Furthermore, these compounds were shown to inhibit sequestration of FP into beta-hematin and to prevent both the peroxidative and glutathione-mediated destruction of FP under conditions designed to mimic the environment within the malaria parasite. By contrast, two of the modeled diterpene isonitriles, 7-isocyanoamphilecta-11(20),15-diene (12) and 7-isocyano-15-isothiocyanatoamphilecta-11(20)-ene (13), that displayed little antimalarial activity also showed little inhibitory activity in these FP detoxification assays. These studies suggest that the active isonitrile compounds, like the quinoline antimalarials, exert their antiplasmodial activity by preventing FP detoxification. Molecular dynamics simulations performed with diisocyanoadociane (4) and axisonitrile-3 (2) allowed their different binding to FP to be distinguished.
The actions of insulin-like growth factors (IGFs) are modulated by a family of high-affinity binding proteins (IGFBPs), including IGFBP-6, which preferentially binds IGF-II and is O-glycosylated. Glycosylated and nonglycosylated recombinant human IGFBP-6, expressed in Chinese hamster ovary cells and Escherichia coli, respectively, were purified using IGF-II affinity chromatography and reverse-phase medium-pressure chromatography. Electrospray ionization mass spectrometry (ESMS) of glycosylated IGFBP-6 revealed considerable heterogeneity of carbohydrate composition. Major glycoforms contained 8-16 monosaccharides, including N-acetylhexosamine, hexose, and N-acetylneuraminic acid. Glycosylation sites of IGFBP-6 were identified as Thr126, Ser144, Thr145, Thr146, and Ser152 by using a combination of ESMS and Edman sequencing of tryptic fragments separated by reverse-phase high-pressure liquid chromatography. One oligosaccharide chain contained 5-6 monosaccharides, whereas the others contained 2-4 monosaccharides. Glycosylated IGFBP-6 exhibited greater resistance to proteolysis by chymotrypsin and trypsin than nonglycosylated IGFBP-6. Native disulfide bond positions in IGFBP-6 were localized by means of observed disulfide-linked tryptic fragments, revealing that there are two disulfide-linked subdomains within each of the N- and C-terminal regions and confirming a previous suggestion that the latter regions are not interconnected. A model of IGFBP-6 is developed in which these distinct domains are separated by a central region which is O-glycosylated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.