Luminescent materials are widely used for imaging and sensing owing to their high sensitivity, rapid response and facile detection by many optical technologies1. Typically materials must be chemically tailored to achieve intense, photostable fluorescence, oxygen-sensitive phosphorescence or dual emission for ratiometric sensing, often by blending two dyes in a matrix. Dual-emissive materials combining all of these features in one easily tunable molecular platform are desirable, but when fluorescence and phosphorescence originate from the same dye, it can be challenging to vary relative fluorescence/phosphorescence intensities for practical sensing applications. Heavy-atom substitution 2 alone increases phosphorescence by a given, not variable amount. Here, we report a strategy for modulating fluorescence/phosphorescence for a single-component, dual-emissive, iodide-substituted difluoroboron dibenzoylmethane-poly(lactic acid) (BF 2 dbm(I)PLA) solid-state sensor material. This is accomplished through systematic variation of the PLA chain length in controlled solvent-free lactide polymerization 3 combined with heavy-atom substitution2. We demonstrate the versatility of this approach by showing that films made from low-molecular-weight BF 2 dbm(I)PLA with weak fluorescence and strong phosphorescence are promising as 'turn on' sensors for aerodynamics applications 4 , and that nanoparticles fabricated from a higher-molecularweight polymer with balanced fluorescence and phosphorescence intensities serve as ratiometric tumour hypoxia imaging agents.Ratiometric sensing addresses challenges associated with sensor concentration and obviates the need for specialized luminescence lifetime instrumentation. For example, Kopelman and co-workers developed a powerful nanosensor (PEEBLEs) for ratiometric oxygen sensing comprising a cyanine dye standard and an O 2 -sensitive Pt porphyrin phosphor in a sol-gel matrix and demonstrated its utility for cell biology 5 . Single-component dye-polymer conjugates with both fluorescence and phosphorescence offer advantages over threecomponent dye/standard/matrix mixtures. Dual-emissive materials possess an internal rather than external standard in ratiometric sensing schemes, and thus, 1:1 fluorophore/phosphor stoichiometry, resulting in greater sample homogeneity and minimal dye leaching. Readily processable biomaterials combined with photostable, optically tunable dyes that emit brightly even in aqueous environments are beneficial for imaging and sensing in biomedical contexts. Previously, we discovered that difluoroboron dibenzoylmethane-poly(lactic acid) (BF 2 dbmPLA; as in Fig. 1, with hydrogen in place of iodide) exhibits unusual, long-lived green room-temperature phosphorescence (RTP) in addition to intense blue fluorescence 6 . Given that thermal decay pathways are often accessible, it is rare to see RTP from organic compounds; typically organized media7 , 8 or heavy atoms9 are required for RTP. This feature adds enhanced capability to the excellent fluorescence properties o...
A flexible and fast Monte Carlo-based model of diffuse reflectance has been developed for the extraction of the absorption and scattering properties of turbid media, such as human tissues. This method is valid for a wide range of optical properties and is easily adaptable to existing probe geometries, provided a single phantom calibration measurement is made. A condensed Monte Carlo method was used to speed up the forward simulations. This model was validated by use of two sets of liquid-tissue phantoms containing Nigrosin or hemoglobin as absorbers and polystyrene spheres as scatterers. The phantoms had a wide range of absorption (0-20 cm(-1)) and reduced scattering coefficients (7-33 cm(-1)). Mie theory and a spectrophotometer were used to determine the absorption and reduced scattering coefficients of the phantoms. The diffuse reflectance spectra of the phantoms were measured over a wavelength range of 350-850 nm. It was found that optical properties could be extracted from the experimentally measured diffuse reflectance spectra with an average error of 3% or less for phantoms containing hemoglobin and 12% or less for phantoms containing Nigrosin.
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.tissue engineering | contractile force | self-repair | angiogenesis | window chamber
Exercise has been shown to improve postischemia perfusion of normal tissues; we investigated whether these effects extend to solid tumors. Estrogen receptor–negative (ER-, 4T1) and ER+ (E0771) tumor cells were implanted orthotopically into syngeneic mice (BALB/c, N = 11–12 per group) randomly assigned to exercise or sedentary control. Tumor growth, perfusion, hypoxia, and components of the angiogenic and apoptotic cascades were assessed by MRI, immunohistochemistry, western blotting, and quantitative polymerase chain reaction and analyzed with one-way and repeated measures analysis of variance and linear regression. All statistical tests were two-sided. Exercise statistically significantly reduced tumor growth and was associated with a 1.4-fold increase in apoptosis (sedentary vs exercise: 1544 cells/mm2, 95% CI = 1223 to 1865 vs 2168 cells/mm2, 95% CI = 1620 to 2717; P = .048), increased microvessel density (P = .004), vessel maturity (P = .006) and perfusion, and reduced intratumoral hypoxia (P = .012), compared with sedentary controls. We also tested whether exercise could improve chemotherapy (cyclophosphamide) efficacy. Exercise plus chemotherapy prolonged growth delay compared with chemotherapy alone (P < .001) in the orthotopic 4T1 model (n = 17 per group). Exercise is a potential novel adjuvant treatment of breast cancer.
Optical techniques for functional imaging in mice have a number of key advantages over other common imaging modalities such as magnetic resonance imaging, positron emission tomography or computed tomography, including high resolution, low cost and an extensive library of available contrast agents and reporter genes. A major challenge to such work is the limited penetration depth imposed by tissue turbidity. We describe a window chamber technique by which these limitations can be avoided. This facilitates the study of a wide range of processes, with potential endpoints including longitudinal gene expression, vascular remodeling and angiogenesis, and tumor growth and invasion. We further describe several quantitative imaging and analysis techniques for characterizing in vivo fluorescence properties and functional endpoints, including vascular morphology and oxygenation. The procedure takes ~2 h to complete, plus up to several weeks for tumor growth and treatment procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.