Standard methods for inducing both the structure and weight values of recurrent neural networks fit an assumed class of architectures to every task. This simplification is necessary because the interactions between network structure and function are not well understood. Evolutionary computation, which includes genetic algorithms and evolutionary programming, is a population-based search method that has shown promise in such complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. This algorithm's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods. To Appear in: IEEE Transactions on Neural NetworksThe Ohio State University AbstractStandard methods for inducing both the structure and weight values of recurrent neural networks fit an assumed class of architectures to every task. This simplification is necessary because the interactions between network structure and function are not well understood. Evolutionary computation, which includes genetic algorithms and evolutionary programming, is a population-based search method that has shown promise in such complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. This algorithm's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.